首页|基于振动信号和同步压缩小波变换的电动机测速方法及实验分析

基于振动信号和同步压缩小波变换的电动机测速方法及实验分析

扫码查看
针对部分工业现场电动机无法安装测速传感器,提出一种基于振动信号和同步压缩小波变换的电动机测速方法.对电动机振动信号进行Hilbert变换得到包络信号,解调出其中与转速相关的振动分量;利用同步压缩小波变换分析计算出包络信号的时频图;引入脊线的四分位距和方差对代价函数法进行改进,并利用该方法提取基频振动分量的时频脊线,得到电动机的转速曲线,达到无转速计测速的目的.实验与仿真分析表明,所提方法无论在稳态还是在非稳态工况下都能准确检测出电动机转速,且误差不超过5%.该方法的研究与实践过程可加深学生对调制解调、时频分析等理论知识的理解,提高理论联系实际的能力.
Motor Speed Measurement Method Based on Vibration Signals and Synchrosqueezing Wavelet Transform and Experimental Analysis
To address the issue of some motors in industrial sites being unable to be equipped with speed sensors,this study proposes a motor speed measurement method based on vibration signals and synchrosqueezed wavelet transform.Initially,the motor vibration signal is subjected to Hilbert transform to obtain the envelope signal,demodulating the vibration component directly related to speed.Then,the synchrosqueezed wavelet transform is employed to analyze and compute the time-frequency map of the envelope signal.Finally,the cost function method is improved by introducing the interquartile range and variance of the ridge line,and this modified method is used to extract the time-frequency ridge line of the fundamental frequency vibration component from the time-frequency map,thereby obtaining the motor's speed curve to achieve speed measurement without a tachometer.Through simulation and experimental validation,the proposed method can accurately detect motor speed under both steady and non-steady conditions,and the error does not exceed 5%.The research and practice process of this method can deepen students'understanding of the theoretical knowledge of modulation and demodulation,time-frequency analysis,etc.,and improve their ability to link theory with practice.

tacho-less speed measurementHilbert transformsynchrosqueezing wavelet transformvibration signalexperimental design and analysis

王攀攀、李兴宇、张成、刘扬、徐瑞东

展开 >

中国矿业大学电气工程学院,江苏徐州 221116

无转速计测速 Hilbert变换 同步压缩小波变换 振动信号 实验设计与分析

2023江苏省高等教育教改研究项目2022年中国矿业大学自制实验教学设备重点项目

2023JSJG345SZZ2022Z005

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(10)