首页|基于人工智能的非高斯风压预测虚拟仿真实验教学

基于人工智能的非高斯风压预测虚拟仿真实验教学

扫码查看
利用有限的随机风场时程数据预测未知点位置的随机风场时程,以实现虚拟仿真实验教学的目的,可在一定程度上节省实验费用和资源,降低实验测试难度.利用Matlab仿真软件建立基于支持向量机(SVM)非高斯风压预测仿真方法.仿真结果表明,SVM核函数的选择对非高斯风压预测仿真影响较大,线性核函数模型对非高斯风压的预测仿真效果优于高斯核函数与指数核函数.基于SVM线性核函数模型能有效预测非高斯风压,为风洞试验或风场实测的虚拟仿真教学提供借鉴.
Virtual Simulation Experiment Teaching of Non-Gaussian Wind Pressure Prediction Based on Artificial Intelligence
Using limited random wind field time history data to predict the random wind field time history of unknown point positions can achieve the purpose of virtual simulation experiment teaching,and can save experimental costs and resources to a certain extent,reduce the difficulty of experimental testing.A non-Gaussian wind pressure prediction simulation method based on support vector machine(SVM)is established using Matlab in the paper.Simulation results indicate that the choice of kernel function in SVM significantly impacts the simulation performance of non-Gaussian wind pressure prediction.The linear kernel function model demonstrates better simulation effectiveness for non-Gaussian wind pressure prediction compared to Gaussian and exponential kernel functions.Therefore,the SVM linear kernel function model can effectively predict non-Gaussian wind pressures,providing valuable insights for virtual simulation experiments in wind tunnel tests or field measurements.

non-Gaussian wind pressurevirtual simulationteaching reformartificial intelligencesupport vector machinewind field predition

李锦华、邓羊晨、李涛、黄永虎、李春祥

展开 >

华东交通大学土木建筑学院,南昌 330013

上海大学土木工程系,上海 200444

非高斯风压 虚拟仿真 教学改革 人工智能 支持向量机 预测

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(11)