首页|基于声发射和支持向量机的滑动轴承润滑状态识别实验

基于声发射和支持向量机的滑动轴承润滑状态识别实验

扫码查看
为了对滑动轴承润滑状态进行高效快速准确地在线识别,设计搭建了滑动轴承润滑状态实验台及声发射测量系统,使用声发射技术和遗传算法优化支持向量机的方法对滑动轴承润滑状态进行了实验测试和分析识别.通过对声发射信号进行预处理,从时域、频域、信息熵等多方面提取和选择有效特征参数,将提取到的有效特征参数组合成特征向量用作支持向量机的输入并得到支持向量机分类器的识别结果;通过遗传算法对惩罚因子和核函数参数组合进行优化,获得最佳的润滑状态识别结果,总体准确率达到了93.3%.
Experimental Study of Lubrication States Identification for Journal Bearings with Acoustic Emission Technique and Support Vector Machine Method
In order to online identify the lubrication state of sliding bearing with an efficient,fast and accurate way,an experimental system and a relevant acoustic emission measurement platform were constructed.The lubrication states of sliding bearings were tested and analyzed by the acoustic emission technique and the genetic algorithm-support vector machine method.The acoustic emission signals were firstly pre-processed.The effective feature parameters were extracted and selected from time domain,frequency domain,information entropy,etc.Then,the extracted effective feature parameters were combined into a feature vector as the input of support vector machine.The multi-lubrication states were identified by the support vector machine classifier,and furtherly optimized by the combination of the penalty factor and the kernel function parameter through the genetic algorithm.The optimal lubrication states identification was obtained,and the overall accuracy rate reached 93.3%.

gearbox in wind turbinejournal bearinglubrication stateacoustic emissionsupport vector machine

王琳、王星、滕金磊、张宝文、鲁如烨

展开 >

西北工业大学 机电学院,西安 710072

西北工业大学 机械基础国家级实验教学示范中心,西安 710072

西北工业大学 机械基础与航空制造国家级虚拟仿真实验教学中心,西安 710072

风电齿轮箱 滑动轴承 润滑状态 声发射 支持向量机

2024

实验室研究与探索
上海交通大学

实验室研究与探索

CSTPCD北大核心
影响因子:1.69
ISSN:1006-7167
年,卷(期):2024.43(12)