首页|基于匹配追踪算法的地震数据提高分辨率方法

基于匹配追踪算法的地震数据提高分辨率方法

Seismic resolution enhancement based on matching pursuit algorithm

扫码查看
提高地震数据的分辨率对于薄储层的识别与表征具有重要意义.常规的反褶积、反Q滤波等提高地震分辨率处理方法,存在假设条件多、信噪比较低、算法不稳定等不足,使得方法的应用效果和适用性受限.提出了一种新的基于匹配追踪算法的地震数据提高分辨率方法,可以在保持较高信噪比的同时提高地震数据分辨率.首先,根据地震信号特点,利用频率加权指数函数计算基准子波,并由此构建子波字典,频率加权指数函数可以很好地拟合不同形状的频谱,更好地适应不同的工区.然后,利用匹配追踪算法将原始地震数据分解为一系列子波的线性叠加,增加较高信噪比的高频匹配子波的振幅.最后对地震数据进行重构,获得高分辨率的地震数据.应用结果表明,该方法可有效提高地震分辨率,具有较高的信噪比,并且提高分辨率处理的结果与测井合成地震记录有很好的吻合性,证明方法是可靠的,且处理结果有利于后续薄储层识别与描述.
It is important to improve seismic resolution for thin reservoir characterization.Conventional methods,e.g.deconvolution and inverse Q filtering,are not effective enough owing to the problems of rigorous assumptions,low signal-to-noise ratio,and low robustness.A new method based on matching pursuit algorithm was proposed,which can improve the seismic resolution while maintaining high signal-to-noise ratio.Firstly,according to the characteristics of seismic signals,a wavelet dictionary was construc-ted using a frequency-weighted-exponential(FWE)function,which performed well in fitting spectra of different shapes.Then,seis-mic data were decomposed as the linear superposition of the wavelets in the wavelet dictionary using the matching pursuit algo-rithm,followed by amplitude enhancement for those matched wavelets with high frequencies and high signal-to-noise ratios.Final-ly,the matched wavelets were summed up to obtain high-resolution seismic data.The application test showed that processed data with high resolution and high signal-to-noise ratio agreed with synthetic seismogram calculated using log data.Reliable results will facilitate subsequent thin reservoir characterization.

matching pursuithigh resolutionseismic data decompositionwavelet dictionarythin bed

李京南

展开 >

中石化石油物探技术研究院有限公司,江苏南京 211103

匹配追踪 高分辨率 地震数据分解 子波字典 薄层识别

国家自然科学基金企业创新发展联合基金中国石化科技部项目

U19B6003P22138

2024

石油物探
中国石油化工股份有限公司石油物探技术研究院

石油物探

CSTPCD北大核心
影响因子:1.094
ISSN:1000-1441
年,卷(期):2024.63(3)
  • 18