首页|基于自适应时窗的矢量分解去噪方法

基于自适应时窗的矢量分解去噪方法

Vector decomposition denoising based on adaptive time windows

扫码查看
基于有效信号与噪声的矢量存在差异的特点,发展并形成了一种自适应时窗矢量分解(adaptive time window vector de-composition,ATW-VD)去噪方法.该方法将地震记录瞬时属性引入到时窗系数求解中,根据瞬时属性反映的地震记录特征自适应调节时窗尺度,以平衡不同区域地震记录矢量分解去噪和有效信号振幅保护的能力.将该方法应用于一套含噪声模型地震数据的处理,并与经典的固定时窗矢量分解(fixed time window vector decomposition,FTW-VD)去噪结果进行了比较,验证了方法的正确性和有效性,并将该方法应用于实际地震数据处理中.研究结果表明,该方法能够更加精确地提取地震信号的矢量方向特征,有效利用了有效信号与噪声之间的矢量角度差异压制噪声;在压制空间上无方向特性、延续时间短的噪声时具有较大的优势,特别适用于随机噪声、50 Hz电缆波和尖脉冲等噪声的压制;在保护有效信号振幅、波形等特征的同时可大幅度提高地震资料的信噪比.
A denoising method using adaptive time window vector decomposition(ATW-VD)is developed based on the differences be-tween effective signal and noise vectors.The instantaneous attributes of seismic records are employed to solve time window coefficients;the scale of time window is adaptively adjusted based on instantaneous attributes,which indicate seismic characteristics,to balance vector de-composition denoising and signal amplitude preservation in different regions.Based on a noisy data set,we compare ATW-VD denoising with the classical denoising method using fixed time window vector decomposition(FTW-VD)and verify the correctness and effectiveness of the new method.The application to field data processing shows that our method can accurately extract the vector-direction features of seismic signals and effectively utilize signal-noise vector-angle differences for noise reduction.It is feasible for suppressing spatially direc-tionless noises with short duration,especially random noises,cable waves of 50 Hz,and bursts.ATW-VD denoising can significantly improve the signal-to-noise ratio of seismic data while preserving true amplitude and waveform.

vector decompositiondenoisingadaptive time windowHilbert transformrandom noise50 Hz cable wavesburst

孙云鹏、沈鸿雁、杨晨睿、车晗、王波桦、刘帅

展开 >

西安石油大学地球科学与工程学院,陕西西安 710065

陕西省油气成藏地质学重点实验室,陕西西安 710065

矢量分解 去噪 自适应时窗 希尔伯特变换 随机噪声 50 Hz电缆波 尖脉冲

陕西省自然科学基础研究计划重点项目陕西省重点研发计划项目西安石油大学研究生创新与实践能力培养计划项目西安石油大学研究生创新与实践能力培养计划项目

2017JZ0072022GY-148YCS23114112.YCS22214207YCS23113045

2024

石油物探
中国石油化工股份有限公司石油物探技术研究院

石油物探

CSTPCD北大核心
影响因子:1.094
ISSN:1000-1441
年,卷(期):2024.63(5)
  • 22