首页|基于IMA-AmMLP模型的CO2驱最小混相压力预测

基于IMA-AmMLP模型的CO2驱最小混相压力预测

扫码查看
最小混相压力是衡量油藏能否达到混相驱的标准.为了对最小混相压力进行精准预测,运用改进蜉蝣算法(IMA)优化多层感知机(MLP)的预测模型.运用注意力机制实现对最小混相压力影响因素的提取;通过引入混沌Sobol序列、非线性惯性权重和反向学习的方法增强蜉蝣算法寻优能力,为多层感知机提供最优的权值和阈值,进而构建IMA-AmMLP最小混相压力预测模型;并以吉林油田实际区块为例,对使用效果进行了验证.验证结果表明,IMA-AmMLP模型的预测结果与实际值的拟合度更高,其平均绝对误差为1.036 MPa,平均绝对百分误差为0.024,均方根误差为0.835,均优于原始模型.研究结果表明,IMA-AmMLP模型能够更准确地预测最小混相压力,可以为运用CO2驱开采油藏提供参考.
Prediction of minimum miscibility pressure for CO2 flooding based on the IMA-AmMLP model
The minimum miscibility pressure(MMP)is a critical parameter that determines whether a reservoir can be explored by miscible flooding.To accurately predict the MMP,the multi-layer perceptron(MLP)prediction model was optimized using an im-proved mayfly algorithm(IMA).The attention mechanism was used to extract the factors affecting MMP;the optimization capabili-ty of IMA was enhanced by incorporating chaotic Sobol sequences,nonlinear inertia weights,and reverse learning methods.These improvements can provide optimal weights and thresholds for the MLP,leading to the establishment of the IMA-AmMLP model for MMP prediction.The model was validated by the case study of a block in Jilin oilfield.The results demonstrate that the IMA-AmMLP model exhibit a higher degree of fitting between the predicted and actual values,with a mean absolute error(MAE)of 1.036 MPa,a mean absolute percentage error(MAPE)of 0.024,and a root mean square error(RMSE)of 0.835,and the values were all superior to those of the original model.This indicates that the IMA-AmMLP model can more accurately predict MMP,providing a valuable reference for the exploitation and management of reservoirs using CO2 flooding in fields.

minimum miscibility pressuremultilayer perceptroninertia weightmayfly optimization algorithmattention mechanism

骆正山、张景奇、骆济豪、王小完

展开 >

西安建筑科技大学管理学院 陕西西安 710055

北京理工大学睿信学院 北京 102488

最小混相压力 多层感知机 惯性权重 蜉蝣优化算法 注意力机制

国家自然科学基金项目

41877527

2024

石油学报
中国石油学会

石油学报

CSTPCD北大核心
影响因子:3.438
ISSN:0253-2697
年,卷(期):2024.45(10)