首页|呼吸窘迫综合征早产儿发生呼吸机相关性肺炎的影响因素及其风险预测列线图模型构建

呼吸窘迫综合征早产儿发生呼吸机相关性肺炎的影响因素及其风险预测列线图模型构建

扫码查看
目的 探讨呼吸窘迫综合征(RDS)早产儿发生呼吸机相关性肺炎(VAP)的影响因素,构建并验证其风险预测列线图模型。方法 选取2020年8月—2023年8月扬州大学附属医院收治的224例RDS早产儿,采用随机数字表法将早产儿按照7∶3的比例分为建模集(156例)与验证集(68例)。收集母亲及早产儿情况,根据是否发生VAP将建模集早产儿分为VAP组和非VAP组。采用多因素Logistic回归分析探讨RDS早产儿发生VAP的影响因素;采用R软件及rms程序包建立RDS早产儿发生VAP的风险预测列线图模型;进行Hosmer-Lemeshow拟合优度检验以评价该列线图模型的拟合程度;采用ROC曲线分析该列线图模型对RDS早产儿发生VAP的预测价值。结果 建模集156例早产儿中74例发生VAP,发生率为47。44%。VAP组与非VAP组新生儿危重病例评分(NCIS)、有创机械通气时间、拔管后无创通气时间、重复插管上机次数比较,差异有统计学意义(P<0。05)。多因素Logistic回归分析结果显示,NCIS、有创机械通气时间、拔管后无创通气时间、重复插管上机次数是RDS早产儿发生VAP的独立影响因素(P<0。05)。基于上述因素构建RDS早产儿发生VAP的风险预测列线图模型。Hosmer-Lemeshow拟合优度检验结果显示,在建模集和验证集中,该列线图模型的拟合程度较好(P<0。05)。ROC曲线分析结果显示,该列线图模型预测建模集和验证集RDS早产儿发生VAP的AUC分别为0。958[95%CI(0。914~0。999)]、0。875[95%CI(0。723~0。951)]。结论 NCIS、有创机械通气时间、拔管后无创通气时间、重复插管上机次数是RDS早产儿发生VAP的独立影响因素,基于上述因素构建的列线图模型对RDS早产儿发生VAP具有较好的区分能力。
Influencing Factors of Ventilator-Associated Pneumonia in Preterm Infants with Respiratory Distress Syndrome and Construction of Nomogram Model for Predicting Its Risk
Objective To explore the influencing factors for ventilator-associated pneumonia(VAP)in preterm infants with respiratory distress syndrome(RDS),and construct and validate the nomogram model for predicting its risk.Methods A total of 224 premature infants with RDS admitted to Affiliated Hospital of Yangzhou University from August 2020 to August 2023 were selected.Preterm infants were divided into the modeling set(156 cases)and the validation set(68 cases)in a 7∶3 ratio by the random number table method.The information of mothers and preterm infants were collected.The preterm infants were divided into VAP group and non-VAP group according to whether VAP occurred or not in the modeling set.Multivariate Logistic regression analysis was used to explore the influencing factors of VAP in preterm infants with RDS;R software and rms package were used to establish the risk prediction nomogram model for VAP in preterm infants with RDS;Hosmer-Lemeshow goodness-of-fit test was used to evaluate the degree of the fit of the nomogram model;and ROC curves were used to analyze the predictive value of the nomogram model for VAP in preterm infants with RDS.Results VAP occurred in 74 of 156 preterm infants in the modelling set,with an incidence rate of 47.44%.There was significant difference in Neonatal Critical Illness Score(NCIS),invasive mechanical ventilation time,non-invasive ventilation time after extubation,and the number of repeated intubation on the machine between the two groups(P<0.05).Multivariate Logistic regression analysis showed that NCIS,invasive mechanical ventilation time,non-invasive ventilation time after extubation,and the number of repeated intubation on the machine were independent influencing factors for VAP in preterm infants with RDS(P<0.05).Based on the above factors,the nomogram model was constructed to predict the risk of VAP in preterm infants with RDS.The results of the Hosmer-Lemeshow goodness-of-fit test showed that the nomogram model fitted better in the modeling set and validation set(P<0.05).ROC curve analysis showed that the AUC of nomogram model for predicting VAP in preterm infants with RDS in modeling set and verification set was 0.958[95%CI(0.914-0.999)]and 0.875[95%CI(0.723-0.951)],respectively.Conclusion NCIS,invasive mechanical ventilation time,non-invasive ventilation time after extubation,and number of repeated intubation on the machine are independent influencing factors for VAP in preterm infants with RDS.The nomogram model constructed based on above factors has a better discriminatory ability for VAP in premature infants with RDS.

Respiratory distress syndrome,newbornInfant,prematurePneumonia,ventilator-associatedRoot cause analysisNomograms

许如丽、倪春梅、李眉、王伏东、蒋丽军、王莉

展开 >

225000 江苏省扬州市,扬州大学附属医院儿科

呼吸窘迫综合征,新生儿 婴儿,早产 肺炎,呼吸机相关性 影响因素分析 列线图

2025

实用心脑肺血管病杂志
河北省心脑肺血管病防治研究办公室

实用心脑肺血管病杂志

影响因子:1.864
ISSN:1008-5971
年,卷(期):2025.33(2)