首页|院内临床早期预警系统的研究进展:从传统模型到人工智能

院内临床早期预警系统的研究进展:从传统模型到人工智能

扫码查看
早期识别高危的患者并及时干预,可预防患者在住院期间发生心脏呼吸骤停等严重不良事件.在院内心脏呼吸骤停之前,患者多会表现出生命体征或生理指标的异常.临床早期预警系统正是基于监测这些关键指标,以实现对高危患者的早期识别和干预,从而降低不良事件的发生率.本文综述了院内临床早期预警系统的发展历程,从传统的单参数系统、多参数系统和综合加权预警系统,到基于信息化的自动化预警系统,再到基于机器学习和人工智能的新型临床预警系统.此外,本文还评估了这些系统在实际临床环境中的应用效果,以及它们在提高患者安全和改善预后方面的潜力.
Research progress on in-hospital clinical early warning systems:from traditional models to artificial intelligence
Early identification of high-risk patients and timely intervention can prevent serious adverse events such as cardio-respiratory arrest during hospitalization.Patients often show abnormalities in vital signs or physiological indicators before in-hospital cardiorespiratory arrest.The clinical early warning system is based on monitoring these critical indicators to achieve early identification and intervention of high-risk patients,thereby reducing the incidence of adverse events.This article reviews the development process of clinical early warning systems in hospitals,from traditional single parameter systems,multi-parameter systems and comprehensive weighted early warning systems,to automated early warning systems based on information technology,and to new clinical early warning systems based on machine learning and artificial intelligence.Additionally,this article evaluates the effectiveness of these systems in real clinical settings and their potential to improve patient safety and outcomes.

Rapid response systemEarly warning scoreClinical deteriorationAutomated warningMachine learning

吴昌德、袁世鑫、黄力维、杨毅、刘松桥

展开 >

江苏省重症医学重点实验室,东南大学附属中大医院重症医学科,江苏 南京 210009

江苏省连云港市第一人民医院,徐州医科大学附属连云港医院,南京医科大学康达学院第一附属医院,南京医科大学连云港临床医学院,江苏连云港 222000

南京市溧水区人民医院,东南大学附属中大医院溧水分院重症医学科,江苏南京 211200

快速反应系统 早期预警评分 临床恶化 自动化预警 机器学习

国家自然科学基金资助项目

81971885

2024

实用医院临床杂志
四川省医学科学院 四川省人民医院

实用医院临床杂志

CSTPCD
影响因子:1.179
ISSN:1672-6170
年,卷(期):2024.21(4)
  • 1