首页|小样本预测埋地管道外腐蚀速率

小样本预测埋地管道外腐蚀速率

扫码查看
为解决现有线性回归模型、单一支持向量机和遗传算法优化支持向量机(GA-SVM)等管道腐蚀速率预测准确率低的难题,选取总含盐量、氧化还原电位、pH值、氯离子浓度、硝酸根浓度、硫酸根浓度、溶解氧含量、自然腐蚀电位等埋地管道外腐蚀速率的主要影响因素作为输入变量,采用麻雀搜索算法优化支持向量机算法,建立了麻雀搜索优化的支持向量机(SSA-SVM)腐蚀速率预测模型.测试集验证结果表明,SSA-SVM模型的决定系数R2 为 0.991 9,高于线性回归模型(0.718 9)、单一支持向量机(0.844 2)和GA-SVM(0.913 7);均方根误差为 0.068 6 mm/a,低于其他 3种模型的 0.116 6、1.774 5、0.118 3 mm/a;平均绝对误差为0.090 2 mm/a,低于其他 3种模型的 0.147 4、1.705 6、0.097 7 mm/a;平均相对误差为 3.94%,低于其他 3种模型的 25.59%、32.29%和 6.42%.采用此模型随机选择B管道 8组检测数据预测埋地管线外腐蚀速率,与现场实际年腐蚀速率对比预测精度为0.964 2,高于GA-SVM的预测精度 0.669 0,表明该模型可应用于埋地管道的外腐蚀量和腐蚀速率预测,为埋地管道的安全运行提供数据支持.
Small sample prediction of external corrosion rates of buried pipelines
To address the shortcomings of existing linear regression models,single-support vector machines and genetic algorithm-supported vector machines in predicting pipeline corrosion rate,the sparrow search slgorithm-supported vector machine(SSA-SVM)corrosion rate prediction model was developed by using sparrow search algorithm and selecting dominant factors including total salinity,oxidation-reduction potential,pH value,chloride ion concentration,nitrate radical concentration,dissolved oxygen content and natural corrosion potential as input variations.SSA-SVM corrosion rate prediction model has a coefficient of determination R2 of 0.9919,which is higher than that of the linear regression model(0.7189),single-support vector machine(0.8442)and GA-SVM(0.9137).The root-mean-square error is 0.0686 mm/a,which is lower than 0.1166,1.7745 and 0.1183 mm/a,the values of the other three models.The average absolute error is 0.0902 mm/a,which is lower than 0.1474,1.7056 and 0.0977 mm/a,the values of the other three models..The average relative error is 3.94%,which is lower than 25.59%,32.29%and 6.42%,the percentage of the other three models.Using this model,8 sets of data were chosen at random to predict the external corrosion rate of buried pipeline B.Compared to real annual corrosion rate on site,the prediction accuracy was 0.9642,higher than 0.6690,the prediction accuracy of the genetic algorithm-supported vector machine,indicating that the model can be used to predict the external corrosion rate of underground pipelines in oil fields,offering data support for safe operation of the buried pipelines.

oil and natural gasoil and gas storage and transportationgathering and transportation pipelinespipeline corrosionprediction modelinfluencing factorsparrow search algorithmsupport vector machine

赵阳

展开 >

中国石油辽河油田公司油气集输公司,辽宁盘锦 124010

石油天然气 油气储运 集输管道 管道腐蚀 预测模型 影响因素 麻雀搜索算法 支持向量机

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(1)
  • 25