首页|树增强型贝叶斯模型提升溢流预警时间提前量

树增强型贝叶斯模型提升溢流预警时间提前量

扫码查看
(目的意义)溢流发生到形成井喷事故的间隔时间是防止井喷的重要窗口,为解决现有的贝叶斯溢流预警方法的报警时间滞后、误报率较高的问题.(方法过程)文章通过分析井口溢流状态数据间的关联性,建立树增强型贝叶斯模型;从川渝地区91 口钻井溢流事件收集到的录井数据中,提取时序性特征录井参数并构建训练数据集;将训练后的模型进行测试,形成了树增强型贝叶斯网络早期溢流识别的预警方法.(结果现象)将训练集外某口井的溢流数据用作预警模型的测试集,树增强型贝叶斯方法的溢流预警模型误报率相较于其他模型降低 52.07%;预警模型能够在溢流发生前 16.6 min进行报警,相较于朴素贝叶斯早期溢流预警模型的预警时间提前 510 s.(结论建议)树增强型贝叶斯早期溢流预警模型引入了溢流发生时异常参数的关联性,能够在较低误报率的前提下将溢流预警时间大幅提前,为基于录井大数据的溢流预警模型提供了新的建立思路.
Enhancing kick detection lead time with a tree-augmented bayesian model
The interval between a kick occurrence and a blowout is a critical window for preventing blowouts.To address the issues of delayed alarm times and high false alarm rates in existing Bayesian kick detection methods,improvements are necessary.This study analyzed the correlation between surface kick data to establish a tree-augmented Bayesian model.Sequential feature logging parameters were extracted from 91 drilling kick events in the Sichuan-Chongqing region to construct a training dataset.The trained model was tested to develop an early kick detection method based on the tree-augmented Bayesian network.Kick data from a well outside the training set was used as the test set for the detection model.The Bayesian-based kick detection model reduced the false alarm rate by 52.07%compared to other models.The detection model issued an alarm 16.6 minutes before the kick occurred,510 seconds earlier than the naïve Bayesian early kick detection model.The tree-augmented Bayesian early kick detection model incorporates the correlation of anomalous parameters during kick events.It significantly advances the kick detection time while maintaining a lower false alarm rate.This approach provides a new framework for developing kick detection models based on large-scale logging data.

SafetyDrillingBig dataArtificial intelligenceEnergy SecurityDigital transformationEngineering TechnologyAlgorithm

王学强、樊建春、杨哲、罗双平、徐志凯、蔡正伟、熊毅

展开 >

中国石油大学(北京)安全与海洋工程学院,北京昌平

中国石油西南油气田分公司工程技术研究院,四川成都

安全 钻井 大数据 人工智能 能源安全 数字化转型 工程技术 算法

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(4)