首页|自然语言方法提取油井修井施工信息提高智能化效率

自然语言方法提取油井修井施工信息提高智能化效率

扫码查看
(目的意义)传统修井知识提取方法,存在人工提供效率低下且无法处理大规模数据的不足,导致修井措施制定水平缺乏科学性.(方法过程)为此设计一种基于标签权重的改进注意力机制,与预训练权重模型和BiLSTM共同构成修井知识实体提取模型,同时提出一种融合贝叶斯方法和Hash树的改进Apriori算法,形成了面向施工方案文本的两阶段修井知识智能分析与挖掘方法.(结果现象)该方法在大港油田开展应用,结果表明:修井知识实体提取模型的识别精度可达81.83%,改进的Apriori模型挖掘频繁项集数量为 814条,具有强关联实体组合 515条,关联规则计算效率提高 34.38%.(结论建议)文章提出的修井知识智能分析与挖掘方法可提高修井知识提取效率,为石油工程领域数据提取、数字化建设提供思路.
Extracting oil workover construction information using natural language methods to improve intelligent efficiency
Traditional methods for extracting workover knowledge have the shortcomings of low efficiency provided by manpower and inability to handle large-scale data,resulting in a lack of scientificity in the formulation level of workover measures.For this reason,in the entity extraction stage,an improved attention mechanism based on label weights is designed,which,together with the pre-trained weight model and Bidirectional Long Short-Term Memory(BiLSTM),forms a workover knowledge entity extraction model.In the association rule mining stage,an improved Apriori algorithm that integrates the Bayesian method and the Hash tree is proposed,thus forming a two-stage intelligent analysis and mining method for workover knowledge oriented to the texts of construction plans.Upon being applied in Dagang Oilfield,The results indicate that the recognition accuracy of the workover knowledge entity extraction model can reach 81.83%.The number of frequent itemsets mined by the improved Apriori model is 814,with 515 strongly associated entity combinations,and the computational efficiency of the association rules is increased by 34.38%.The intelligent analysis and mining method for workover knowledge proposed in this article can enhance the efficiency of workover knowledge extraction,providing ideas for data extraction and digital construction in the field of petroleum engineering.

Artificial intelligenceBig dataAlgorithmWorkoverDigital economyLaboratory testNew quality productivityOil and gas reform

杨希军、孔红芳、赵东、易春飚、于国起

展开 >

中国石油天然气股份有限公司大港油田分公司,天津滨海新区

人工智能 大数据 算法 修井 数字经济 室内测试 新质生产力 油气改革

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(4)