首页|时间序列统计法预测中国石油石化领域大数据算法发展趋势

时间序列统计法预测中国石油石化领域大数据算法发展趋势

扫码查看
(目的意义)适合中国石油石化领域的大数据算法经过多年试错探索,依然没有找到适合石油石化领域数据特征的算法.由于反复试错不仅分散人力物力,还影响了智能化发展进程.(方法过程)从中外文献数据库中收集石油石化领域近10年来 800多篇与算法相关文献,涉及大数据算法相关性较强文献 87篇,按报道内容和关键词将文献分为勘探开发类(上游)47篇、油气集输类(中游)25篇和石油化工类(下游)15篇,采用时间序列统计法拟合出的方程,拟合优度0.8以上,表明可以用来预测未来 5年石油石化领域大数据算法发展趋势.同时,以平均应用频率为尺度,高于平均数的算法,可能适用石油石化领域的数据特征.(结果现象)未来 5年,整体上石油石化领域应用算法解决具体问题时可以选择现有 25种算法中的 9种.上游可选择现有 24种算法中的 5种,中游可选择现有 19种算法中的 6种,下游可选择现有13种算法中的 4种.(结论建议)用定量的方法预测算法的未来趋势,不仅揭示了石油石化领域大数据关键技术发展趋势,为石油石化领域科研立项提供参考,也为文献综述提供了一种可选择的方法.
Time series statistical method predicts the trend of big data algorithms in China's petroleum and petrochemical industry
After years of trial and error in the oil and petrochemical industry,no clear consensus has been reached on which big data algorithms are most suitable for the specific characteristics of the sector's data.Repeated trial-and-error approaches have dispersed human and material resources and hindered the progress of intelligent development.Based on international and domestic literature databases,87 highly relevant articles were collected from over 800 publications related to big data applications in the oil and petrochemical sector over the past decade.These articles were categorized according to their content and keywords into three groups:exploration and development(47 articles),oil and gas storage and transportation(25 articles),and petrochemical processes(15 articles).Using the ARIMA model,the fitted equation,with a goodness-of-fit exceeding 0.8,indicates that it can be used to predict the development trends of big data algorithms in the oil and petrochemical field over the next five years.Additionally,the average number of algorithm application frequency was used as a benchmark;algorithms with publication counts above this average were deemed more likely to be suitable for the sector's data characteristics.Over the next five years,the number of algorithms applied to solve specific problems in the oil and petrochemical sector is projected to decrease from 25 to 9.In the exploration and development category,the number of algorithms is expected to reduce from 24 to 5.In the oil and gas storage and transportation category,the number is anticipated to decline from 19 to 6.For the petrochemical category,the number of algorithms is predicted to decrease from 13 to 4.The time series prediction of the future development trends of big data algorithms in the oil and petrochemical industry has revealed the trajectory of big data technology development and research gaps in this field.These findings provide valuable insights for choosing research project directions in the oil and petrochemical industry.

Oil and gas resourcesExploration and developmentOil&gas storage and transportationPetroleum refiningintelligenceBig dataalgorithmsIiterature review

李荣光、金龙、孙伶、赵俊淇、陈斯迅、郑力会

展开 >

国家管网集团北方管道有限责任公司信息中心,河北廊坊

中国石油大学(北京)石油工程学院,北京昌平

中国教育科学研究院教育统计分析研究所,北京海淀

油气资源 勘探开发 油气储运 石油炼化 智能 大数据 算法 文献综述

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(5)