首页|多元录井参数随钻定量监测方法提高生烃超压地层压力监测效率

多元录井参数随钻定量监测方法提高生烃超压地层压力监测效率

扫码查看
(目的意义)古近系生烃地层异常高压风险日益突出,随钻压力监测不准确所导致的工程复杂情况逐渐增多,严重影响了钻井作业安全及作业时效.有必要研究更准确的监测方法来降低钻井作业风险.(方法过程)通过分析研究区古近系生烃地层异常压力的特征,利用皮尔逊相关系数法优选出工程录井、地化录井、元素录井中的 7项特征参数,建立了基于遗传算法优化的随机森林随钻定量地层压力监测模型,并利用模型对研究区 9口井地层压力系数进行了预测.(结果现象)预测值与实际值平均相对误差为 7.4%,应用合格率达到 88.9%,相比常规监测方法提升了 22.2%,平均相对误差降低了3.9%,证明模型可靠有效.(结论建议)为钻井中完层位卡取、钻井液性能调整以及钻井作业安全提供了坚实的技术保障.
Multi dimensional logging parameter quantitative monitoring method while drilling improves the efficiency of pressure monitoring in hydrocarbon generating over-pressure formations
The risk of abnormal high pressure in hydrocarbon generating formations of the Paleogene is becoming increasingly prominent,and the engineering complexity caused by inaccurate monitoring of drilling pressure is gradually increasing,seriously affecting the safety and efficiency of drilling operations.It is necessary to study more accurate monitoring methods to reduce the risk of drilling operations.By analyzing the characteristics of abnormal pressure in the hydrocarbon generating strata of the Paleogene in the study area,Pearson correlation coefficient method was used to optimize seven characteristic parameters from engineering logging,geochemical logging,and elemental logging.A genetic algorithm optimized random forest while drilling quantitative formation pressure monitoring model was established,and the model was used to predict the formation pressure coefficients of nine wells in the study area.The average relative error between the predicted value and the actual value is 7.4%,and the application qualification rate reaches 88.9%.Compared with conventional monitoring methods,it has increased by 22.2%,and the average relative error has decreased by 3.9%,proving the reliability and effectiveness of the model.The conclusion and suggestion provide a solid technical guarantee for the complete layer capture,drilling fluid performance adjustment,and drilling operation safety during drilling.

Formation pressuremonitorAccuracyMonitoring timeLoggingCorrelation analysisAlgorithmNew Quality Productivity

彭超、吴立伟、李战奎、王雪飞

展开 >

中海油能源发展股份有限公司工程技术分公司,天津滨海新区

中海石油(中国)有限公司天津分公司,天津滨海新区

地层压力 监测 准确性 监测时间 录井 相关性分析 算法 新质生产力

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(5)