首页|变权重组合算法预测抽油机井动液面提高测试效益

变权重组合算法预测抽油机井动液面提高测试效益

扫码查看
(目的意义)为解决抽油机井动液面传统人工测试方法劳动强度大、测试频次低、测试成本高等问题,(方法过程)文章利用皮尔逊相关系数分析方法,分析了 29项抽油机井自动采集特征参量与实测动液面的相关性,确定了 13项主控特征参量;应用XGBoost、LightGBM及BP神经网络等机器学习方法,分别创建了抽油机井动液面预测模型,通过对三种模型输入 13项主控特征参量,评价了三种模型的动液面预测结果,发现单一预测模型无法适应全部抽油机井,因此建立了基于上述三种预测模型的变权重组合模型.(结果现象)长庆油田现场多轮次应用显示:与传统人工测试方法对比,平均相对误差在 5%以内,测试效率提升 15万倍以上,劳动强度降低 90%以上,测试频次高出 2000多倍,测试成本降低96%.(结论建议)变权重组合动液面预测模型切实解决了传统人工测试方法劳动强度大、测试频次低、测试成本高等问题,为国内油田动液面测试提供了新思路.
Variable weight combination prediction model improves the efficiency of dynamic liquid level testing in pumping unit wells
To address the issues of high labor intensity,low testing frequency,and high testing costs associated with traditional manual testing methods for the dynamic liquid level in pumping unit wells,the article employs the Pearson correlation coefficient analysis method to investigate the correlation between 29 automatically collected characteristic parameters of pumping unit wells and the measured dynamic liquid level,ultimately identifying 13 key characteristic parameters.Utilizing machine learning techniques,including XGBoost,LightGBM,and BP neural network,distinct dynamic liquid level prediction models for pumping unit wells were developed.Through the input of 13 key characteristic parameters into these models,an evaluation of their prediction outcomes was conducted.The evaluation revealed that a singular prediction model was inadequate for all pumping unit wells.Consequently,a variable weight combination model,founded on the three prediction models,was formulated.Numerous field applications in Changqing Oilfield have demonstrated that,in comparison to traditional manual testing methods,this approach achieves an average relative error within 5%,a testing efficiency increase of over 150,000 times,a reduction in labor intensity by over 90%,a testing frequency increase exceeding 2,000 times,and a significant 96%reduction in testing costs.In conclusion,the variable weight combination dynamic liquid level prediction model effectively addresses the challenges posed by high labor intensity,low testing frequency,and high testing costs inherent to traditional manual testing methods,thereby offering novel insights for dynamic liquid level testing in domestic oil fields.

Oil wellOil recoveryPumping unit wellDynamic liquid levelPredictive modelMachine learningPearson correlation coefficientNeural network

艾信、刘天宇、张浩伟、曹伟、周娟、辛宏

展开 >

中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,陕西西安

低渗透油气田勘探开发国家工程实验室,陕西西安

中国石油天然气股份有限公司长庆油田分公司第七采油厂,陕西西安

中国石油天然气股份有限公司长庆油田分公司第五采油厂,陕西西安

展开 >

油井 采油 抽油机井 动液面 预测模型 机器学习 皮尔逊相关系数 神经网络

2024

石油钻采工艺
华北油田分公司 华北石油管理局

石油钻采工艺

CSTPCD北大核心
影响因子:0.975
ISSN:1000-7393
年,卷(期):2024.46(5)