首页|基于机器学习方法的《德伯家的苔丝》中文译本翻译风格考察

基于机器学习方法的《德伯家的苔丝》中文译本翻译风格考察

扫码查看
研究使用机器学习中的分类和聚类方法,基于自建平行语料库,考察哈代名作《德伯家的苔丝》中文三译本的翻译风格.从68个全部特征中筛选出15个显著特征,并结合实例进行量性融合的阐释和总结.结果表明,显著特征能够有效区分三译本风格差异,分类、聚类实验的平均准确率均达到97%左右,提示出各译本在词汇、句法、语篇上的不同风格特征和译者的个人偏好.研究在为既往质性研究提供数据支持和细粒度分析的同时,也提出了一些纠正性结论,如张谷若译本词汇密度更大、被字句比例极少、成语比例差别不大等,并为翻译风格和译者风格研究方法提供了 一定改进和补充.
An Investigation of Literary Translation Style Through ML Method:A Case Study of Tess of D'Urberville
This paper applies classification and clustering methods in machine learning studies,builds a parallel corpus,and examines the translation styles of the three versions of Hardy's masterpiece Tess of the D'Urberville.From a total of 68 features,15 significant ones are selected and quantitatively synthesized with examples for detailed explana-tion.The results show that these salient features can effectively distinguish the stylistic differences among the three translations,with both classifying and clustering experiments achieving an average accuracy rate of about 97%.The study found that at the document-level,each translation shows different style features at the vocabulary,syntax,and discourse aspects;in terms of the keyword level,the frequency differences of certain keywords also present the translator's personal preferences.The article provides data support and fine-grained analysis for previous qualitative re-search,while also proposing some corrective conclusions,such as the higher lexical density,extremely lower proportion of passive bei sentence,and similar number of idioms in Zhang's translation compared to the others.Eventually we at-tempt to provide some improvements and supplements to the research methodology in translation style and translator's style studies.

machine learningtranslation styleparallel corpusTess of the D'Urbervilles

孔德璐

展开 >

同济大学外国语学院

机器学习 翻译风格 平行语料库 《德伯家的苔丝》

2024

数字人文研究

数字人文研究

ISSN:
年,卷(期):2024.4(1)
  • 47