Abstract
A significant demand rises for energy-efficient deep neural networks to support power-limited embedding devices with successful deep learning applications in IoT and edge computing fields.An accurate energy prediction approach is critical to provide measurement and lead optimization direction.However,the current energy pre-diction approaches lack accuracy and generalization ability due to the lack of research on the neural network structure and the excessive reliance on customized training dataset.This paper presents a novel energy prediction model,NeurstrucEnergy.NeurstrucEnergy treats neural networks as directed graphs and applies a bi-directional graph neural network training on a randomly generated dataset to extract structural features for energy predic-tion.NeurstrucEnergy has advantages over linear approaches because the bi-directional graph neural network collects structural features from each layer's parents and children.Experimental results show that Neu-rstrucEnergy establishes state-of-the-art results with mean absolute percentage error of 2.60%.We also evaluate NeurstrucEnergy in a randomly generated dataset,achieving the mean absolute percentage error of 4.83%over 10 typical convolutional neural networks in recent years and 7 efficient convolutional neural networks created by neural architecture search.Our code is available at https://github.com/NEUSoftGreenAI/NeurstrucEnergy.git.
基金项目
Natural Science Foundation of Liaoning Province(2020-BS-054)
Fundamental Research Funds for the Central Universities(N2017005)
National Natural Science Foundation of China(62162050)