首页|基于PrefixSpan和LightGBM的网元拓扑连接关系判别方法

基于PrefixSpan和LightGBM的网元拓扑连接关系判别方法

扫码查看
文章创新地提出了一种基于PrefixSpan和LightGBM的网元拓扑连接关系判别的方法,采用PrefixSpan算法对告警数据进行抽取挖掘,然后将挖掘结果进行分析并将分析结果输入到LightGBM中进行监督学习,获得最终网元拓扑连接关系判定模型。实验结果表明:本方法在基站及相关网元拓扑连接关系的推断中f1值达到了0。89,有效提升了网元拓扑连接关系判别的准确度,为网元拓扑连接关系校正提供了有力手段,为数字孪生网络构建打下坚实的基础。
A method for Identify Network Element Topology Connection Relationships Based on PrefixSpan and LightGBM
This article innovatively proposes a method for network element topology connection relationship discrimination based on PrefixSpan and LightGBM.The PrefixSpan algorithm is used to extract and mine alarm data,and the mining results are analyzed.The analysis results are then input into LightGBM for supervised learning to obtain the final network element topology connection relationship judgment model.The experimental results show that the f1 value of this method in inferring the topological connection relationship between base stations and related network elements reaches 0.89,effectively improving the accuracy of network element topological connection relationship discrimination,providing a powerful means for correcting network element topological connection relationships,and laying a solid foundation for the construction of digital twin networks.

digital twin networksfrequent itemsetstime serieselement topological connectivitymachine learning

倪晋宇、涂泾伦、杨天昊、陈晓峰、白云飞

展开 >

中国移动通信集团安徽有限公司,安徽 合肥 230000

中国移动通信集团有限公司,北京 100033

亿阳信通股份有限公司北京分公司,北京 100043

数字孪生网络 频繁项集 时序 网元拓扑连接 机器学习

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(1)
  • 13