首页|内容个性化推荐优化探索

内容个性化推荐优化探索

扫码查看
本文旨在提升推荐算法的效果,更好地满足用户个性化需求,为构建更好的内容推荐系统提供支持。文中阐述了内容个性化推荐算法的重要性、目前存在的问题和局限性,并提出了相应的优化改善方案。当前常见的内容推荐算法在冷启动、数据稀疏性、复杂关系建模和长期依赖等方面存在问题,本文针对这些问题进行了一系列优化改善方案的探索。未来的研究可以进一步探索其他技术手段和数据处理方法,以进一步提升内容个性化推荐的效果和内容产品的用户满意度。
Exploration of Content Personalization Recommendation Optimization
The research purpose of this article is to improve the effectiveness of recommendation algorithms,better meet the personalized needs of users,and provide support for building a better content recommendation system.The article elaborates on the importance,current problems,and limitations of content personalized recommendation algorithms,and proposes corresponding optimization and improvement plans.The current common content recommendation algorithms have problems in cold start,data sparsity,complex relationship modeling,and long-term dependencies.This article explores a series of optimization and improvement solutions to address these issues.Future research can further explore other technical means and data processing methods to further enhance the effectiveness of personalized content recommendation and user satisfaction of content products.

personalized recommendation of contentrecommendation algorithmcold startdata sparsitymodeling complex relationshipslong term dependence

谢楠

展开 >

江苏新华报业传媒集团,江苏 南京 210092

内容个性化推荐 推荐算法 冷启动 数据稀舒性 复杂关系建模 长期依赖

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(1)
  • 3