首页|以YOLO与SSD算法实现无人机自动巡航的可行性及应用策略分析

以YOLO与SSD算法实现无人机自动巡航的可行性及应用策略分析

扫码查看
YOLO和SSD是实时目标检测算法中最常用的两种算法,具有较高的准确性,将二者应用于无人机路径规划的识别和定位,为无人机自动巡航提供行驶路线,可以帮助其安全、高效地完成任务。鉴于此,文章将分析YOLO与SSD算法在无人机自动巡航中的应用可行性,并提出相应的应用策略,为无人机实现更加安全、高效的路径规划和自动巡航提供技术支持,同时为自动化领域的研究提供学术参考帮助。
Analysis of the Feasibility and Application Strategy of UAV Automatic Cruise Based on Yolo and SSD Algorithms
Yolo and SSD are two of the most commonly used real-time object detection algorithms,both of which have high accuracy.Applying these two algorithms to unmanned aerial vehicle(UAV)path planning,recognition,and localization can provide driving routes for automatic cruise control,helping UAVs complete tasks safely and efficiently.Therefore,this article will analyze the feasibility of applying Yolo and SSD algorithms in UAV automatic cruise control,and propose corresponding application strategies.This provides technical support for UAVs to achieve safer and more efficient path planning and automatic cruise control,and also offers academic reference for research in the automation field.

Yolov3SSDUAVautomation

张恪莱

展开 >

浙江工贸职业技术学院,浙江 温州 325000

Yolov3 SSD 无人机 自动化

浙江工贸职业技术学院2023年度学校访工项目与调研项目

FG202303

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(1)
  • 4