首页|基于机器学习的驾驶员健康识别与安全评估方法研究

基于机器学习的驾驶员健康识别与安全评估方法研究

扫码查看
该文旨在研究基于机器学习的驾驶员健康识别与安全评估方法,以提高道路交通安全.通过采集驾驶员生物特征数据和驾驶行为数据,构建了驾驶员健康状态预测模型.使用深度学习算法对数据进行分析和处理,实现了对驾驶员疲劳、情绪等健康状态的准确识别.在真实驾驶场景中进行测试,结果表明该方法具有较高的识别准确率和实用性,在提高交通安全性方面具有良好的应用前景.
Research on Driver Health Identification and Safety Assessment Method Based on Machine Learning
This article aims to study a machine learning based driver health recognition and safety assessment method to improve road traffic safety.A driver health status prediction model was constructed by collecting driver biometric data and driving behavior data.By using deep learning algorithms to analyze and process data,accurate recognition of driver fatigue,emotions,and other health states has been achieved.Tested in real driving scenarios,the results show that this method has high recognition accuracy and practicality,and has good application prospects in improving traffic safety.

machine learningdriver health recognitionsafety assessmentdeep learningtraffic security safety

刘超、黄和炎、江亮亮、俞国华

展开 >

中国南方电网有限责任公司,广东 广州 510000

机器学习 驾驶员健康识别 安全评估 深度学习 交通安全

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(5)
  • 6