首页|基于特征选择和流形学习的人脸年龄预测研究

基于特征选择和流形学习的人脸年龄预测研究

扫码查看
近年来,人类外观年龄估计在个人安全和执法等方面的广泛应用,已成为一个热门的研究课题,并引起了学术界和市场的广泛关注.为了实现年龄估计的目标,大量学者提出了相关方法,其中,借助累积属性编码导出的模型通过保留年龄的邻近相似性来达到良好的性能.然而,上述方法忽略了提取的面部特征的几何结构.事实上,数据的几何结构会极大地影响预测的准确性.为此,该文提出一种通过联合特征选择和流形学习范式的年龄估计算法,称为特征选择和保持几何的最小二乘回归.与其他方法相比,该方法不仅保留了面部表征中的几何结构,还选择了有区别性的特征.最后,在Morph2数据集上进行了相关实验,结果证明该方法达到了最佳性能.
Research on Facial Age Prediction Based on Feature Selection and Manifold Learning
In recent years,due to the widespread application of human appearance age estimation in personal safety and law enforcement,it has become a hot research topic and has attracted widespread attention from academia and the market.In order to achieve the goal of age estimation,a large number of scholars have proposed relevant methods.Among them,models derived through cumulative attribute encoding achieve good performance by preserving the proximity similarity of age.However,the above methods ignore the geometric structure of the extracted facial features.In fact,the geometric structure of data greatly affects the accuracy of predictions.Therefore,this article proposes an age estimation algorithm called feature selection and geometric preserving least squares regression,which combines feature selection and manifold learning paradigms.Compared with other methods,our proposed method not only preserves the geometric structure in facial representation,but also selects distinctive features.Finally,relevant experiments were conducted on the Morph2 dataset,and the results proved that the method achieved optimal performance.

facial age predictionaccumulated attribute encodingfeature selectionmanifold learning

孔维纹

展开 >

无锡旅游商贸高等职业技术学校,江苏 无锡 214000

人脸年龄预测 累积属性编码 特征选择 流形学习

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(6)
  • 6