首页|基于改进YOLOv3目标检测算法的船舶运载货物自动识别研究

基于改进YOLOv3目标检测算法的船舶运载货物自动识别研究

扫码查看
船舶货物自动识别高精度数据获取难,影响检测性能.该文利用弱监督至全监督框架,结合改进算法构建组合框架,平均识别精度达32.0%,定位精度达73.8%,高于对比方法.该框架在弱监督环境下表现优异,适用于船舶货物自动识别.
Research on Automatic Identification of Ship Cargo Based on Improved YOLOv3 Object Detection Algorithm
The difficulty in obtaining high-precision data for automatic identification of ship cargo affects the detection performance.This study utilizes a weak supervision to full supervision framework combined with improved algorithms to construct a combined framework.The average recognition accuracy reaches 32.0%,and the positioning accuracy reaches 73.8%,which is higher than the comparison methods.This framework performs excellently in a weak supervision environment and is suitable for automatic identification of ship cargo.

YOLOv3weak supervisionship transportationcandidate region

侯国佼、孙荣、肖圣魁、李雯、张栋

展开 >

长江三峡通航管理局,湖北 宜昌 443002

湖南天下宽信息技术有限公司,湖南 长沙 410000

YOLOv3 弱监督 船舶运载 候选区域

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(9)
  • 4