首页|基于改进YOLOv4的实时目标检测方法研究

基于改进YOLOv4的实时目标检测方法研究

扫码查看
为提升实时目标检测的准确性和稳健性,该文采用增强特征融合技术、网络架构技术、损失函数技术等对YOLOv4算法进行优化.结果表明,改良后的YOLOv4算法在多变环境下对小型目标检测表现出色,展现了其实用性和稳定性,为广泛应用奠定了坚实基础.
Research on Real-time Object Detection Method Based on Improved YOLOv4
To enhance the accuracy and robustness of real-time object detection,this paper optimizes the YOLOv4 algorithm by employing enhanced feature fusion technology,network architecture technology,loss function technology,and other strategies.The results demonstrate that the improved YOLOv4 algorithm exhibits excellent performance in detecting small objects in diverse environments,showcasing its practicality and stability,and laying a solid foundation for its widespread application.

real-time object detectionYOLOv4feature fusionGIoU loss function

鲁健恒

展开 >

广州华商学院人工智能学院,广东 广州 511300

实时目标检测 YOLOv4 特征融合 GIoU损失函数

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(9)