首页|基于RFECV特征选择和随机森林预测模型的应用与优化

基于RFECV特征选择和随机森林预测模型的应用与优化

扫码查看
该文基于随机森林预测模型,提出RFECV特征选择方法:首先对特征变量进行独热编码,再利用RFECV内置的交叉验证评估各特征子集性能,以确定最佳特征数量,并递归消除低重要性特征.实验表明,该方法在随机森林上训练与预测更快,均方误差更低,特征提取准确率高.
Feature Selection Based on RFECV and Application and Optimization of Random Forest Prediction Model
Based on the random forest prediction model,this paper proposes the RFECV feature selection method:firstly,the feature variables are encoded with one-hot encoding,and then the built-in cross-validation of RFECV is used to evaluate the performance of each feature subset to determine the optimal number of features,and recursively eliminate low-importance features.Experiments show that this method achieves faster training and prediction on the random forest,lower mean squared error,and high accuracy in feature extraction.

random forest prediction modelone-hot encodingrecursive feature eliminationcross-validation

孙晶

展开 >

太原科技大学计算机科学与技术学院,山西 太原 030000

随机森林预测模型 独热编码 递归特征消除 交叉验证

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(9)