首页|基于卷积神经网络模块化搜索的高效电子鼻多气体分类算法

基于卷积神经网络模块化搜索的高效电子鼻多气体分类算法

扫码查看
该文设计了一种基于格拉姆角和场的传感器信号转图方法,并提出了一种基于AlexNet的卷积神经网络模块化结构搜索方法(block-GS).实验结果表明,block-GS方法能够搜索到性能优秀的网络结构,在两个气体数据集上的分类准确率分别达到92.11%和93.33%,比普通网格搜索提高了近5%.此方法有望成为电子鼻模式识别算法设计的有效解决途径之一.
Efficient Electronic Nose Based on Convolutional Neural Network Modular Search Multi Gas Classification Algorithm
This paper designs a sensor signal mapping method based on Gram angle and field,and proposes a convolutional neural network modular structure search method(block GS)based on AlexNet.The experimental results show that the block GS method can search for high-performance network structures,with classification accuracies of 92.11%and 93.33%on two gas datasets,respectively,which is nearly 5%higher than ordinary grid search.This method is expected to become one of the effective solutions for the design of electronic nose pattern recognition algorithms.

electronic nosegraham point and fieldconvolutional neural networkgrid searchgas classification algorithm

祝煜荻、曾敏、杨建华、胡南滔、杨志

展开 >

上海交通大学,上海 200240

电子鼻 格拉姆角和场 卷积神经网络 网格搜索 气体分类算法

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(10)