首页|基于深度卷积神经网络的变电一次设备故障检测方法研究

基于深度卷积神经网络的变电一次设备故障检测方法研究

扫码查看
该文介绍了一种变电一次设备故障检测方法:通过不同光照环境收集一次设备的图像,创建设备数据集并进行预处理,通过深度卷积神经网络提取设备特征并加以检测.经检测,此方法能够明显降低变电一次设备故障的漏报和误报率.
Research on Fault Detection Method for Substation Primary Equipment Based on Deep Convolutional Neural Network
This paper designs a substation primary equipment fault detection method:collecting images of the primary equipment in different lighting environments,creating equipment datasets and preprocessing them,and extracting equipment features for detection based on deep convolutional neural networks.After testing,this method can significantly reduce the missed and false alarm rates of primary equipment faults in substations.

convolutional neural Networksubstationone devicefault detection

张化凯

展开 >

盐城师范学院,江苏 盐城 224007

卷积神经网络 变电站 一次设备 故障检测

2024

数字通信世界
电子工业出版社

数字通信世界

影响因子:0.162
ISSN:1672-7274
年,卷(期):2024.(10)