首页|一种基于学习者画像和特征聚类的高职学生在线学习行为分析方法——以"信息技术"课程为例

一种基于学习者画像和特征聚类的高职学生在线学习行为分析方法——以"信息技术"课程为例

扫码查看
在线学习已成为一种重要的学习方式,如何提升高职学生在线学习的质量是职业教育研究者关心的问题.据此,提出一种基于学习者画像和特征聚类的高职学生在线学习行为分析方法,并以"信息技术"课程为例构建学习者画像;采用两重混合式类别生成方法对学习者进行群体聚类,以帮助教师充分了解不同类别的学习者,进而提高教学质量.
An Analysis Method of Online Learning Behavior of Higher Vocational Students Based on Learner Profiles and Feature Clustering——A Case Study of the"Information Technology"Course
Online learning has become an important learning approach,and how to improve the quality of online learning for higher vocational students is a concern for vocational education researchers.This paper puts forward an analysis method for online learning behavior of higher vocational students based on learner profiles and feature clustering,and takes the"Information Technology"course as an example to construct learner profiles.A dual hybrid category-generating method is adopted to conduct group clustering for learners,which helps teachers fully understand learners of different categories and then improve the teaching quality.

vocational college studentsonline learning behaviorlearner profilesfeature clustering

黄金晶、陈园园

展开 >

苏州工业职业技术学院 人工智能学院,江苏 苏州 215104

高职学生 在线学习行为 学习者画像 特征聚类

2024

苏州市职业大学学报
苏州市职业大学

苏州市职业大学学报

影响因子:0.416
ISSN:1008-5475
年,卷(期):2024.35(4)