首页|基于改进遗传算法的电动汽车充电调度策略

基于改进遗传算法的电动汽车充电调度策略

扫码查看
提出了一种基于改进遗传算法的电动汽车充电调度模型:设计了有效的车辆准入机制,并以停车场运营商利润和车主满意度为优化目标,引入模拟退火算法对传统遗传算法的变异操作进行改进,对提出的IGA算法和充电调度模型进行了实验仿真.结果表明,基于IGA算法的充电调度模型性能良好,能够有效平缓配电网负荷分布,满足充电站运营商和车主的共同利益,为相关领域的研究提供参考和借鉴.
Electric Vehicle Charging Scheduling Strategy Based on Improved Genetic Algorithm
The disordered charging strategy of new energy electric vehicles charging at rated power by plug-and-play has great randomness,which is characterized by easy to produce problems such as peak elec-trical load,low charging efficiency and low owner satisfaction.Aiming at the above problems,a charging scheduling modelfor electric vehicle based on improved genetic algorithms(IGA)is proposed.Firstly,an effective vehicle access mechanism was designed with the optimization goals of parking lot operator profit and owner satisfaction.Secondly,a simulated annealing algorithm was introduced to improve the mutation operation of the traditional genetic algorithm.Finally,experimental simulations are conducted on the pro-posed IGA algorithm and charging scheduling model.The results show that the charging scheduling model based on the IGA algorithm has good performance,can effectively smooth the load distribution of the dis-tribution network,satisfy the common interests of the charging station operators and car owners,and pro-vide references and guidance for the research in related fields.

charge schedulingelectric vehiclesgenetic algorithmsimulated annealing algorithmowner satisfaction

任小强

展开 >

西南交通大学 希望学院,四川 成都 610400

充电调度 电动汽车 遗传算法 模拟退火算法 车主满意度

成都市哲学社会科学重点研究基地成都市交通+旅游大数据应用技术研究项目西南交通大学希望学院校级质量工程项目(2023)西南交通大学希望学院青年科研项目(2023)西南交通大学希望学院校级课程思政建设项目

2023101220230362023050KCSZ2023028

2024

唐山师范学院学报
唐山师范学院

唐山师范学院学报

影响因子:0.204
ISSN:1009-9115
年,卷(期):2024.46(3)
  • 12