首页|压缩感知实现方法及应用综述

压缩感知实现方法及应用综述

An Overview of Compressed Sensing Implementation and Application

扫码查看
压缩感知理论基于信号可稀疏性原理,通过将信号从高阶矩阵线性投影为低阶矩阵的方法实现压缩采样.本文论述了压缩感知理论,并与传统香农采样定理进行了比较,压缩感知具有采样率低,压缩和采样同时进行等优点,文中详细介绍了信号稀疏表示、构建观测矩阵和信号重建等关键技术的研究现状,并综述了国内外相关研究成果和存在问题.尽管压缩感知理论已经在光学成像、雷达探测和语音编码等领域取得了较好的效果,而且在医疗三维成像、超声图像检测等方面具有良好的发展前景,但该理论还有待进一步研究和验证,以满足各种实际应用需要.
Compressed sensing is based on the principle of signal sparsity,which achieves that high-order matrix signal is compressed to low-level compression matrix.The paper discusseed the compressed sensing theory,and compared it with traditional shannon sampling.Compression perception had a low sampling rate,compression and sampling were the same process,etc.This paper also discussed key technologies of the signal sparse representation,building measurement matrix,signal reconstruction,related research achievements and reviewed problems in detail.Although the theory had achieved good effect in optical imaging,radar detection and speech coding areas,had good prospects for development in the three-dimensional medical imaging,ultrasound image detection,the theory remaind to further research and validation to meet the needs of the various practical application.

compressed Sensingsampling rateShannon sampling

王红亮、王帅、刘文怡

展开 >

中北大学电子测试技术国家重点实验室仪器科学与动态测试教育部重点实验室,山西太原030051

压缩感知 采样率 香农采样

国家自然科学基金国家863项目资助

611270082011AA040404

2014

探测与控制学报
中国兵工学会 西安机电信息研究所 机电工程与控制国家级重点实验室

探测与控制学报

CSTPCDCSCD北大核心
影响因子:0.267
ISSN:1008-1194
年,卷(期):2014.36(4)
  • 9
  • 8