首页|基于熵值图的多功能雷达工作模式识别

基于熵值图的多功能雷达工作模式识别

扫码查看
针对多功能雷达工作模式多样且信号波形复杂多变,导致常规工作模式识别方法性能不佳的问题,提出基于小波变换的多功能雷达工作状态切换点检测方法,将雷达脉冲序列进行分割,得到单一工作模式脉冲序列样本.其次,基于近似熵、样本熵、模糊熵和排列熵设计了新的熵值图特征,并结合卷积深度神经网络模型,实现了多功能雷达工作模式的智能识别.仿真结果表明,该算法在虚假脉冲率或漏脉冲率为 25%时,切换点检测正确率达 85%;工作模式识别正确率在虚假脉冲率、漏脉冲率为 20%和参数误差为 8%时,识别正确率均在 83%以上,识别性能皆优于两种对比文献方法,验证了该算法的有效性和优越性.
Multi-Function Radar Working Mode Recognition Based on Entropy Map
In order to address the problem that traditional work mode recognition methods cannot adapt to the complex and varied waveform characteristics of multi-functional radar,a detection method of the pulse signal se-quence of multi-functional radar state switching points was proposed in this paper,and the pulse signal sequence was segmented into single work mode samples based on wavelet transform.Then,from the perspective of time series analysis and data mining,a multi-functional radar work mode recognition method based on entropy map was realized.This method extracted approximate entropy,permutation entropy,sample entropy,and fuzzy en-tropy of different inter-pulse parameter sequences to form an entropy map,and used a convolutional deep neural network model to achieve intelligent recognition of multi-functional radar work modes.Simulation results showed that the proposed state switching point detection approach achieved a switching point detection accuracy of 85%when the false pulse rate or the missing pulse rate was 25%,and the operating mode recognition accura-cy was above 83%when the false pulse rate,the missing pulse rate and the parameter error were 20%and 8%.Respectively,the recognition performance of the proposed method was superior to the two comparative literature methods,which verified the effectiveness of the algorithm.

multi-function radarworking mode recognitionentropy mapstate switch point detectionCNN

温珍银、孙闽红、唐向宏、田煦然、郁春来

展开 >

杭州电子科技大学通信工程学院,浙江 杭州 310018

空军预警学院,湖北 武汉 430019

多功能雷达 工作模式识别 熵值图 状态切换点检测 卷积神经网络

国防特色学科发展项目

JCKY2019415D002

2024

探测与控制学报
中国兵工学会 西安机电信息研究所 机电工程与控制国家级重点实验室

探测与控制学报

CSTPCD北大核心
影响因子:0.267
ISSN:1008-1194
年,卷(期):2024.46(1)
  • 26