首页|改进人工势场引导的双向扩展随机树路径规划算法

改进人工势场引导的双向扩展随机树路径规划算法

扫码查看
针对地面移动机器人在复杂环境之下要求规划路径实时性强、路线平滑度高、避障精确完备等需求,在快速扩展随机树算法(RRT)的基础之上,提出一种由改进人工势场法(APF)引导的双向扩展随机树算法(APF-Bi-RRT*).首先,在每次迭代的过程之中两棵随机树同时分别从起始点和目标点进行扩展,以加快算法收敛速度;其次,在算法随机树生长方向上,引入目标偏置策略来优化随机子节点的选取,并在随机树和障碍物中加入人工势场分量,限制路径方向选择的随机性,改进算法克服引力和斥力过大导致陷入局部最优值或目标不可达的问题;最后,在形成锯齿型规划路径之上应用一种采样优化和关键节点平滑策略,进一步缩短和平滑原路径的总距离.对比实验结果证明,该算法既克服了传统随机树算法的节点盲目扩展的问题,又兼顾了生成路径的效率和平滑性,与目标偏置 RRT算法相比,在规划路径长度上减少了 9.7%左右,在运行时间上缩短了 65.3%左右,在算法迭代次数上减少了 78.2%左右.
Bidirectional Extended Random Tree Path Planning Algorithm Guided by Improved Artificial Potential Field Method
Aiming at the requirements of strong real-time path planning,high route smoothness,accurate and complete obstacle avoidance for ground mobile robots in complex environments,a bidirectional extended random tree algorithm(APF-BI-RRT∗)guided by improved artificial Potential Field method(APF)was proposed based on the fast extended random tree algorithm(RRT).The algorithm first expanded two random trees from the starting point and target point respectively in each iteration to speed up the algorithm convergence speed.Sec-ondly,in the growth direction of the algorithm random tree,the target bias strategy was introduced to optimize the selection of random child nodes,and artificial potential field components were added to the random tree and obstacles to limit the randomness of path direction selection.The improved algorithm overcome the problem of local optimal value or unreachable target caused by excessive gravitational and repulsive forces.Finally,a sam-pling optimization and key node smoothing strategy was applied on the formed sawtooth planning path to further shorten and smooth the total distance of the original path.Comparative experimental results showed that the proposed algorithm not only overcome the problem of blind node expansion of traditional random tree algorithm,but also took into account the efficiency and smoothness of path generation.Compared with the target bias RRT algorithm,the proposed algorithm reduced the planned path length by about 9.7%and the running time by a-bout 65.3%.The number of algorithm iterations was reduced by about 78.2%.

improved artificial potential field methodbidirectional fast expanding random treepath planningcurve sampling optimization

衷卫声、闵志豪、权略、熊剑、郭杭、张强

展开 >

南昌大学先进制造学院,江西 南昌 330000

南昌大学信息工程学院,江西 南昌 330000

改进人工势场法 双向快速扩展随机树 路径规划 曲线采样优化

国家自然科学基金项目国家自然科学基金项目

6226302362161022

2024

探测与控制学报
中国兵工学会 西安机电信息研究所 机电工程与控制国家级重点实验室

探测与控制学报

CSTPCD北大核心
影响因子:0.267
ISSN:1008-1194
年,卷(期):2024.46(3)