首页|多点最优最小熵反褶积结合交互信息的过载信号特征提取

多点最优最小熵反褶积结合交互信息的过载信号特征提取

扫码查看
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法.考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征.通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据.
Penetration Overload Signal Feature Extraction Based on MOMEDA and Mutual Information
In the process of ammunition penetrating into multilayer buildings at high speed,the penetration o-verload acceleration signal presents the characteristics of adhesion and aliasing,which heavily affects the accu-rate identification and extraction of penetration features,and makes it difficult for the fuze to count the layers of targets accurately.To solve the above problems,this paper proposed a feature extraction method for penetration overload signal based on multi-point optimal minimum entropy deconvolution adjustment(MOMEDA)and mu-tual information.Considering that the response law of the fuze acceleration sensitive system was unknown under high-frequency strong dynamic loads,the proposed method utilized the non-iterative blind deconvolution en-hancement technology of MOMEDA to achieve noise reduction for the original penetration overload signal.To further enhance the highlighting of multi-layer target features in the original overload signal,the length of the MOMEDA filter was further optimized based on the mutual information theory.Finally,the verification results of the simulation and test signals of the fuze indicated that the proposed method could effectively highlight the penetration characteristics in the original overload acceleration signal,which providing a basis for the accurate layer counting function under strong aliasing signals.

hypervelocity penetrationmulti-point optimal minimum entropy deconvolution adjustmentmutual informationfeature extraction

谢雨岑、房安琪、郜王鑫、李彩芳、邵志豪、张珂、唐万杰

展开 >

机电动态控制重点实验室,陕西 西安 710065

西安机电信息技术研究所,陕西 西安 710065

吉林江机特种工业有限公司,吉林吉林 132000

超高速侵彻 多点最优最小熵反褶积 交互信息 特征提取

2024

探测与控制学报
中国兵工学会 西安机电信息研究所 机电工程与控制国家级重点实验室

探测与控制学报

CSTPCD北大核心
影响因子:0.267
ISSN:1008-1194
年,卷(期):2024.46(5)