首页|去相关无偏转换量测的解耦算法

去相关无偏转换量测的解耦算法

扫码查看
转换量测(CMKF)卡尔曼滤波能较好处理极/球坐标系内观测模型与直角坐标系内状态模型的不兼容问题,在实际中得到推广.在低信噪比环境下,由于方位误差余弦的非线性,转换量测样本分布和协方差阵估计不匹配,导致径向估计误差变大.针对低信噪比条件下的非线性滤波问题,提出度量非线性影响的失配因子指标,采用基于视线坐标系的解耦去相关无偏转换量测(DUCM)模型,在径向上引入加权方位,改善失配因子,提高估计精度.理论分析和仿真证明:这种基于视线坐标系的解耦处理能显著提高径向估计精度,适用于其他转换量测方法,有较好普适性.
Decoupled Algorithm of Decorrelated Unbiased Converted Measurements
As a classical nonlinear filtering algorithm,converted measurement Kalman filter(CMKF)is com-monly employed to address the problem of target tracking when the measurements are in polar or spherical coor-dinates.Under the circumstance of low SNR,the mismatch between converted measurement distribution and co-variance matrix estimate will degrade radial estimation because of azimuth cosine nonlinearity.To solve nonlinear filtering problem with low SNR measurements,a mismatch factor was proposed to evaluate nonlinear influence,a decorrelated unbiased converted measurement(DUCM)model based on line-of-sight coordinate was developed,the weighted azimuth was introduced along visual axis to improve mismatch and down-range accuracy.Theoretic analysis and simulation verified that this decouple operation could improve radial estimation significantly,which could be applied to other converted measurement approaches.

line of sight coordinatenonlinear filteringdecorrelated unbiased conversion measurementdecou-pled algorithm

盛琥、汪海兵、曲成华、方青、靳俊峰

展开 >

江淮前沿技术协同创新中心,安徽 合肥 230000

中国电子科技集团第 38 研究所,安徽 合肥 230031

国防科技大学电子对抗学院,安徽 合肥 230037

中国电子科技集团第38研究所,安徽 合肥 230031

展开 >

视线坐标系 非线性滤波 去相关无偏转换量测 解耦算法

2024

探测与控制学报
中国兵工学会 西安机电信息研究所 机电工程与控制国家级重点实验室

探测与控制学报

CSTPCD北大核心
影响因子:0.267
ISSN:1008-1194
年,卷(期):2024.46(6)