首页|基于深度学习的TFDS货车故障图像智能识别算法研究

基于深度学习的TFDS货车故障图像智能识别算法研究

扫码查看
货车关键部件故障的准确识别对车辆的运用工作非常重要.目前主要依靠动态检车员基于TFDS系统所获取的图像进行人工分析,耗费大量人力、物力,分析效率较低,并且易出现故障漏报,对车辆的运行安全造成隐患.文章提出了基于深度学习的目标检测加部件故障识别的两阶段车辆故障识别算法,通过对标注的图像进行模型训练,实现车辆故障的智能识别.该算法已经在中国铁路郑州局集团郑州北车辆段完成有效性的验证,结果表明,该算法可实现对车辆部件的准确定位、故障自动识别及结果的综合分析,有效提升了TFDS系统的故障识别准确率,大幅降低了漏报率,对于提高货车车辆运用工作的智能化水平,保障运行安全具有重大意义.
Study on the Intelligent Fault Image Identification Algorithm for TFDS Freight Cars Based on Deep Learning
The accurate fault identification for key components of freight cars is very important for the operation of vehicles.The current identification mainly relies on the artificial analysis by dynamic car inspectors based on the images obtained by TFDS system,costing a lot of manpower and material resources,with lower analysis efficiency and great possibility of fault omissions,causing hidden risks to the running safety of vehicles.This article proposes a two-stage vehicle fault identification algorithm based on deep learning including the target detection and the component fault identification.Through model training of the marked images,it can realize the intelligent identification of vehicle faults.The effectiveness of this algorithm has been verified in Zhengzhou North Car Depot of China Railway Zhengzhou Group and it turns out that this algorithm can realize the accurate location,the automatic fault identification and the comprehensive result analysis of the components of vehicles,effectively improve the accuracy of fault identification of TFDS system,greatly reduce the omission rate,so it has an important significance for improving the intelligent level of the operation of freight cars and guaranteeing the operation safety.

TFDSartificial intelligencefault detectiondeep learningtarget inspectioncomponent fault identification

金鑫、王通、程园龙

展开 >

北京华为云计算技术有限公司 EI创新孵化Lab ,北京 100080

华为技术有限公司 中国政企数字政府交通系统部,北京 100077

中国铁路郑州局集团有限公司 郑州北车辆段,河南 郑州 450052

TFDS 人工智能 故障检测 深度学习 目标检测 部件故障识别

中国国家铁路集团有限公司科技研究开发计划

N2021J018-A

2024

铁道车辆
青岛四方车辆研究所有限公司

铁道车辆

影响因子:0.232
ISSN:1002-7602
年,卷(期):2024.62(1)
  • 11