首页|基于ResNet50的地铁走行部滚动轴承故障诊断模型

基于ResNet50的地铁走行部滚动轴承故障诊断模型

扫码查看
作为地铁列车走行部的核心部件,滚动轴承长期在高速、变载荷、强噪声环境下工作,极易产生裂纹、磨损和疲劳剥落等缺陷,其可靠性和安全性直接影响列车的安全运行,因此研究轴承的故障诊断技术对于保障列车安全具有重要意义.传统的故障诊断方法多依赖于人工经验和频谱分析,工作量大、效率不高,难以满足目前地铁列车智能化的发展要求.而现代的人工智能方法,如卷积神经网络(CNN)和注意力机制,则在故障检测的准确性和效率方面展现出卓越的性能.文章设计了一种结合卷积神经网络和注意力机制的滚动轴承故障诊断模型,描述了数据特征提取和模型构建的具体过程,并通过试验验证了其有效性.试验结果表明,该模型在提高故障检测的准确性方面有明显优势.
Rolling Bearing Fault Diagnosis Model for Running Gear of Metro Vehicle Based on Edge Computing
This article aims to improve the safety and reliability of metro operation by designing a rolling bearing fault diagnosis model for running gear of metro car based on edge computing.The wide application of edge computing in the industrial IoT shows its obvious advantages in real-time data processing and low-latency response,which is significant for the fault diagnosis of the running gear of metro car.Most of the conventional fault diagnosis methods rely on the human experience and the spectral analysis,while the modern artificial intelligent methods,like the Convolutional Neural Network(CNN)and the attention mechanism,demonstrate their distinguished performance in accuracy and efficiency of fault detection.The CNN and the attention mechanism are combined to design a bearing fault diagnosis model based on edge computing and its effectiveness has been verified by testing.The test result shows that this model is obviously advantageous in improving the accuracy of fault detection.

running gear of metro carrolling bearingfault diagnosisConvolutional Neural Networkattention mechanism

李帅、梁海泉、张宗志

展开 >

同济大学 铁道与城市轨道交通研究院,上海 201804

深圳中车轨道车辆有限公司,广东 深圳 518105

地铁走行部 滚动轴承 故障诊断 卷积神经网络 注意力机制

2024

铁道车辆
青岛四方车辆研究所有限公司

铁道车辆

影响因子:0.232
ISSN:1002-7602
年,卷(期):2024.62(6)