首页|基于特征聚类的轨道不平顺潜在病害辨识

基于特征聚类的轨道不平顺潜在病害辨识

扫码查看
研究目的:轨道不平顺潜在病害隐蔽性强,对其准确合理辨识是开展预防修策略下线路养护维修作业的前提.本文以轨检数据为基础,分别构造了以轨道质量指数(TQI)和轨道不平顺幅值为对象的潜在病害辨识指标.在此基础上,基于k-means++聚类算法和手肘法通过判定样本最佳聚类簇数实现潜在病害的识别及定位.依托某有砟铁路动检数据对所提轨道不平顺潜在病害辨识方法进行了验证.研究结论:(1)对于均值管理来说,在16 km连续轨道区段上2处区段单元潜在病害被准确识别,其历史最大TQI值分别约为5.5 mm、5.3 mm,且潜在病害定位结果与实际里程基本吻合;(2)对于峰值管理来说,在500 m连续轨道区段上2处局部不平顺潜在病害也被准确识别,其历史最大幅值约为3 mm、3.3 mm,潜在病害定位结果与实际里程基本吻合;(3)本研究成果可与大机捣固作业、人工精调作业相结合,为预防修策略下的潜在病害整治提供辅助参考.
Identification of Track Irregularity Potential Defect Based on the Track Inspection Data Feature Clustering
Research purposes:Track irregularity potential defect has the characteristics of strong concealment,and the identification of these defects with high accuracy is the premise of carrying out the preventive maintenance for railway track.Based on the dynamic inspection data,some potential defects identification indexes were constructed using track quality index(TQI)and track irregularity amplitude.Taking the identification indexes as the clustering samples,the k-means++clustering algorithm and the elbow method were combined to judge the optimal cluster number of samples to determine the potential defects and their location.The effectiveness of the proposed method was verified from the dynamic detection data of a ballasted railway.Research conclusions:(1)For the standard deviation management,two potential defects on the 16 km continuous track sections were identified effectively,with the historical maximum values of TQI of 5.5 mm and 5.3 mm,and these locations are consistent with the real site.(2)For the peak management,two potential defects and their locations within the 500 m track section were also detected effectively,with the historical maximum amplitudes of longitudinal level irregularity of 3 mm and 3.3 mm.(3)The proposed potential defects identification method can provide assistance and reference for renovation of potential defects under the preventive maintenance strategy with the machine tamping and manual interventions.

track irregularitypotential defectfeature clusteringk-means++identification

王英杰、楚杭、陈云峰、时瑾、张雨潇

展开 >

北京交通大学,北京 100044

中国铁路兰州局集团有限公司,兰州 730000

轨道不平顺 潜在病害 特征聚类 k-means++ 辨识

国家重点研发计划国家自然科学基金国家自然科学基金

2022YFB26029005217840652078035

2024

铁道工程学报
中国铁道学会 中国铁路工程总公司 中国中铁股份有限公司

铁道工程学报

CSTPCD北大核心
影响因子:0.996
ISSN:1006-2106
年,卷(期):2024.41(5)
  • 4