首页|基于机器视觉的高鲁棒轨道表面缺陷检测方法

基于机器视觉的高鲁棒轨道表面缺陷检测方法

扫码查看
研究目的:为了解决轨道缺陷检测系统在实际自然环境因素干扰下由于鲁棒性下降从而造成决策的不确定性问题,提出一种提高检测系统鲁棒性的方法,首先利用变异算法处理生成多样化的鲁棒训练样本,使模型能够学习适应各种环境扰动和变化,然后选择基于YOLOv5的目标检测模型作为轨道缺陷检测器,以满足高精度、实时性的要求,且准确性较高.研究结论:(1)通过变异生成算法,可以生成更多样性的鲁棒训练样本,使模型有更多的样本来学习各种扰动,以此适应各种环境;(2)所选YOLOv5目标检测模型作为轨道缺陷检测器,不仅能满足轨道缺陷检测对检测精度和实时性的高要求,而且即使在训练样本数量有限的情况下,也能凭借其优秀的泛化能力取得良好的检测效果,契合了实际轨道检测场景下对数据获取的困难,展现出较强的适用性;(3)在真实地铁线路上采集轨道巡检数据进行实验,实验结果表明,经过鲁棒重训练的轨道缺陷检测器在扰动数据上的鲁棒性得到了显著的提升,平均准确率提高23.35%,召回率提高32.75%,mAP50提高30.98%,mAP50-95提高19.54%;(4)本研究成果可应用于铁路、地铁等交通领域,有助于保障线路的安全运行.
High Robust Track Surface Defect Detection Method Based on Computer Vision Technique
Research purposes:In order to solve the uncertainty problem of decision-making caused by the decrease of robustness of the track defect detection system under the interference of actual natural environmental factors,a method to improve the robustness of the detection system is proposed.Firstly,the mutation algorithm is used to generate diversified robust training samples,so that the model can learn to adapt to various environmental disturbances and changes.Then,the target detection model based on YOLOv5 is selected as the track defect detector to meet the requirements of high precision,real-time performance and high accuracy.Research conclusions:(1)Through the mutation generation algorithm,more diverse robust training samples can be generated,so that the model has more samples to learn various disturbances and changes,so as to adapt to various environments.(2)The selected YOLOv5 target detection model as a track defect detector can not only meet the high requirements of track defect detection for detection accuracy and real-time performance,but also achieve good detection results with its excellent generalization ability even if the number of training samples is limited.It fits the difficulty of data acquisition in the actual track detection scene and shows strong applicability.(3)Experiments were carried out on the track inspection data collected on real subway lines.The experimental results show that the robustness of the robust retrained track defect detector on the disturbance data has been significantly improved.The average accuracy rate is increased by 23.35%,the recall rate is increased by 32.75%,the mAP50 is increased by 30.98%,and the mAP50-95 is increased by 19.54%.(4)The research results can be applied to railway,subway and other transportation fields,which is helpful to ensure the safe operation of the line.

target detectiontrack defect detectionmutation generation algorithmrobust retraining

李栋、王睿、王烨、江周娴、崔晓彤

展开 >

北京交通大学,北京 100044

中铁第六勘察设计院集团有限公司,天津 300308

目标检测 轨道缺陷检测 变异生成算法 鲁棒重训练

中铁第六勘察设计院集团有限公司重大科技研发计划中铁第六勘察设计院集团有限公司重大专项科技研发计划中国国家铁路集团有限公司科技研发计划中央高校基本科研业务费专项

KY-2022-07KY-2023-03K2023S008-CJB2022JBXT003

2024

铁道工程学报
中国铁道学会 中国铁路工程总公司 中国中铁股份有限公司

铁道工程学报

CSTPCD北大核心
影响因子:0.996
ISSN:1006-2106
年,卷(期):2024.41(5)
  • 3