首页|基于改进YOLOv7的钢轨表面缺陷检测

基于改进YOLOv7的钢轨表面缺陷检测

扫码查看
研究目的:钢轨表面缺陷是铁路交通安全运行的重要隐患,对其进行准确检测十分重要.钢轨服役的复杂环境使其可能沾染污渍,同时钢轨缺陷形状往往不一致,为解决钢轨附着污渍导致误识别以及缺陷形状不一致导致难以准确检测的问题,提出基于改进YOLOv7的钢轨表面缺陷检测方法.研究结论:(1)通过构建数据集时以包含污渍的钢轨图像作为负样本的方法,利用标签差异使网络学习区分缺陷和污渍的特征,克服了对污渍误检测问题;(2)通过可变形卷积与嵌入通道注意力机制对YOLOv7完成改进,即通过对卷积采样点添加偏置的方式实现可变形卷积替换固定卷积,实现网络对缺陷几何形变适应能力的增强,同时将通道注意力机制嵌入网络中,利用其为不同通道特征加权的特点使网络关注缺陷特征,从而增强了缺陷特征提取能力;(3)通过将钢轨表面缺陷数据集加载于构建的改进YOLOv7网络实现端到端的钢轨表面缺陷检测,证明了所提方法的有效性和可行性;(4)本研究成果可为钢轨表面缺陷智能化检测提供新方法.
Rail Surface Defect Detection Based on Improved YOLOv7
Research purposes:Surface defects of steel rails are important hidden dangers for safe operation of railway traffic,accurate detection of surface defects on steel rails is crucial.The complex environment in which steel rails are in service may cause them to be contaminated with stains,at the same time,the shape of rail defects is often inconsistent.To address the problems of false detection due to stains and difficulty in accurate detection due to different shapes of defects in rail surface defect detection,an improved YOLOv7-based rail surface defect detection method is proposed.Research conclusions:(1)The problem of false detection of stains was overcome by constructing the dataset with images of rails containing stains as negative samples,with the use of label differences to enable the network to learn features that distinguish between defects and stains.(2)YOLOv7 was improved by deformable convolution with an embedded channel attention mechanism.That was,the deformable convolution replaced the fixed convolution by adding a bias to the convolution sampling points to enhance the network's ability to adapt to the geometric deformation of defects.At the same time,the channel attention mechanism was embedded in the network,and its feature of weighting different channel features made the network focus on the defect features,thus enhancing the defect feature extraction ability.(3)The effectiveness and feasibility of the proposed method was demonstrated by loading the rail surface defect dataset onto the constructed improved YOLOv7 network for end-to-end rail surface defect detection.(4)The research can provide a new method for intelligent detection of rail surface defects.

rail surfacedefect detectionattention mechanismdeformable convolution

陈仁祥、潘升、杨黎霞、高晓鹏、王建西

展开 >

重庆交通大学交通工程应用机器人重庆市工程实验室,重庆 400074

重庆科技学院,重庆 401331

重庆市轨道交通(集团)有限公司,重庆 401120

石家庄铁道大学道路与铁道工程安全保障教育部重点实验室,石家庄 050043

展开 >

钢轨表面 缺陷检测 注意力机制 可变形卷积

国家自然科学基金项目重庆市教委科学技术研究项目道路与铁道工程安全保障省部共建教育部重点实验室开放课题重庆市研究生联合培养基地项目

51975079KJZD-M202200701STDTKF202204JDLHPYJD2021007

2024

铁道工程学报
中国铁道学会 中国铁路工程总公司 中国中铁股份有限公司

铁道工程学报

CSTPCD北大核心
影响因子:0.996
ISSN:1006-2106
年,卷(期):2024.41(7)