首页|卷积神经网络在断层破碎带智能判识中的应用

卷积神经网络在断层破碎带智能判识中的应用

扫码查看
研究目的:断层破碎带是隧道施工中最常见的地质异常体之一,易导致涌水突泥、塌方等地质灾害.为助力解决传统地质预报解译依赖经验多、准确率偏低等问题,本文提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的隧道断层破碎带智能判识算法,以协助专业人员快速有效判识断层破碎带.研究结论:(1)基于地质大背景和标准化预报图片数据集,采用YOLOv5深度学习框架,引入BoTNet模块,并结合自注意力机制,形成断层破碎带智能判识算法(New YOLOv5),可实现其位置、规模等要素的智能识别;(2)相较于传统的YOLOv5算法,优化后的算法对不良地质体的识别准确性较高,mAP以及mAPmax值的增长率分别为13.68%和9.96%,其中最高mAP值可达84.79%;(3)本研究成果在一定程度上可推动隧道断层破碎带的超前预报结果解译水平的进一步提升,实现由"经验为主、质量不一"向"智能判识、快速有效"的技术进步,可为隧道智能化建造提供有利的技术支撑,具有良好的工程应用前景.
Application of Convolutional Neural Networks in Intelligent Recognition of Fault Fracture Zones
Research purposes:The fracture zone is one of the most common geological anomalies in tunnel construction,which is prone to gushing water and mud,landslides and other geological disasters.To help solve the problems of relying on experience and low accuracy of traditional geological prediction interpretation,an intelligent identification algorithm of tunnel fault fracture zone based on Convolutional Neural Network(CNN)was proposed to assist professionals in identifying fault fracture zone quickly and effectively.Research conclusions:(1)Based on the geological background and standardized forecast picture data set,the YOLOv5 deep learning framework was adopted,the BoTNet module was introduced,and the self-attention mechanism was combined to form an intelligent identification algorithm for fault fracture zone(New YOLOv5),which can realize the intelligent identification of its location,scale and other elements.(2)Compared with the traditional YOLOv5 algorithm,the optimized algorithm has a higher accuracy in identifying undesirable geologic bodies,with the growth rates of mAP as well as mAPmax values of 13.68%and 9.96%,respectively,where the highest mAP value can reach 84.79%.(3)To a certain extent,the research results can promote the further improvement of the interpretation level of the results of the over-advance prediction of tunnel fault fracture zones,and realize the technological progress from"experience-based,varying quality"to"intelligent identification,fast and effective",which can provide favorable technical support for the intelligent construction of tunnels,and has a good prospect of engineering application.

tunnel engineeringfracture zoneconvolutional neural networkHSPadvance geological predictiondeep learning

孙克国、贾敬龙、江兵、熊志、周玉龙

展开 >

西南交通大学,成都 610031

隧道工程 断层破碎带 卷积神经网络 HSP 超前地质预报 深度学习

2024

铁道工程学报
中国铁道学会 中国铁路工程总公司 中国中铁股份有限公司

铁道工程学报

CSTPCD北大核心
影响因子:0.996
ISSN:1006-2106
年,卷(期):2024.41(11)