首页|基于集装箱运用数据的铁路集装箱装卸站聚类融合算法研究

基于集装箱运用数据的铁路集装箱装卸站聚类融合算法研究

扫码查看
为了在集装箱造箱质量评价中排除集装箱不同运用工况造成的影响,通过分析近10年涵盖了运输品类、办理站特性及装卸频次等多维度因素的集装箱运用和维修数据,针对铁路集装箱办理站在运用方面的差异性,构建了基于集装箱运用数据的装卸站聚类指标体系,并通过数据预处理技术,形成可用于聚类分析的数据集.采用多种聚类算法对处理后的数据集进行综合分析,以识别出具有相似集装箱运用特征的办理站群体.为克服不同算法可能导致的结果偏差,研究引入一种基于"投票原理"的算法融合策略,以消减算法间的依赖性.聚类结果的对比分析表明,融合后的聚类效果优于任何单一算法的效果,可为铁路集装箱维修综合分析提供基础数据.
Clustering Algorithm for Railway Container Handling Stations Based on Container Operation Data
To eliminate the impact of different container applications on the quality evaluation of container manufacturing,this paper analyzed the container operation and maintenance data from the past 10 years that covered multiple factors such as transportation categories,station characteristics,and handling frequency.Based on the differences in the operation of railway container stations,a container cluster index system was constructed using container operation data.A dataset available for cluster analysis was formed through data preprocessing technology.Various clustering algorithms,such as K-means,EM,and Canopy,were utilized to comprehensively analyze the processed dataset to identify station groups with similar container operation characteristics.To overcome the potential bias of different algorithms,an algorithm fusion strategy based on the voting principle was introduced to reduce the dependence among algorithms.The results show that the fused cluster effect is superior to the effect of any single algorithm,which can provide basic data for the comprehensive analysis of railway container maintenance.

RailwayIntegrated TransportationContainer MaintenanceData MiningAnalysis of Loading and Unloading StationCluster AlgorithmFusion Algorithm

王旭、祝凌曦、李诗林

展开 >

中铁集装箱运输有限责任公司 箱布管理部,北京 100055

北京交通大学 交通运输学院,北京 100044

铁路 综合运输 集装箱维修 数据挖掘 装卸站分析 聚类算法 融合算法

中国国家铁路集团有限公司科技研究开发计划课题

K2019S010

2024

铁道货运
中国铁道科学研究院

铁道货运

影响因子:0.776
ISSN:1004-2024
年,卷(期):2024.42(6)