首页|基于STAR-CCM+和ABAQUS的高速列车受电弓流固耦合仿真分析

基于STAR-CCM+和ABAQUS的高速列车受电弓流固耦合仿真分析

扫码查看
基于STAR-CCM+与ABQUS数据交换技术的流固耦合计算方法,开展某高速列车受电弓气动激扰作用下的流固耦合分析,将流场计算结果同风洞试验结果进行比对,验证仿真计算结果的准确性.分析列车明线运行时受电弓周围的流场压力分布特性、耦合构件的变形量和等效应力参数.计算结果表明,弓头的压差阻力是气动阻力的重要组成部分.弓头和上臂杆连接位置,垂向位移最大,可达99.35 mm.弓头垂向变形位移均值应达到约60 mm.上框架焊缝应力最大值可达25.71 MPa,焊缝的许用应力和安全阈值均满足标准要求.计算结果为高速列车受电弓真实场景下的优化设计提供了重要指导.
Simulated Analysis of Fluid-Structure Coupling of High-Speed Train Pantograph Based on STAR-CCM+and ABAQUS
A calculation method based on STAR-CCM+and ABQUS data exchange technology was used to analyze the fluid-structure coupling of a high-speed train pantograph under the aerodynamic disturbance.The flow field calculation results were compared with the wind tunnel test results to verify the accuracy of the simulation calculation results.This paper analyzed the pressure distribution characteristics of the flow field around the pantograph,the deformation of the coupling components,and the equivalent stress parameters during the operation of the train on the open track.The calculation results indicate that the pressure difference resistance of the bow head is an important component of aerodynamic resistance.The connection position between the bow head and the upper arm rod has the maximum vertical displacement,reaching upto 99.35 mm.The average vertical deformation displacement of the bow head is expected to reach about 60 mm.The maximum stress of the upper frame weld can reach 25.71 MPa,and the allowable stress and safety threshold of the weld meet the standard requirements.The calculation results provide important guidance for the optimization design of high-speed train pantographs in real scenarios.

high-speed trainpantographflow field distributiondeformationstress analysisnumerical simulation

李晓伟、韩运动、陈大伟、姚拴宝、陶泽宇、陈洋洋

展开 >

中南大学空气动力学铁路行业重点实验室,湖南长沙 410083

中车青岛四方机车车辆股份有限公司技术工程部,山东青岛 266111

中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心,山东 青岛 266111

湖南理工学院 机械工程学院,湖南 岳阳 414000

展开 >

高速列车 受电弓 流场分布 变形量 应力分析 数值模拟

2024

铁道技术标准(中英文)

铁道技术标准(中英文)

ISSN:
年,卷(期):2024.6(11)