首页|基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究

基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究

扫码查看
隧道衬砌中离散实体目标的检测精度和时效性直接关乎隧道的运营安全,采用图像视觉技术进行图像自动解译可极大提升检测效率和结果的准确性,因此基于离散实体目标的雷达图像数据构建自定义雷达数据集合,并提出一套改进的Faster R-CNN算法对隧道衬砌中的离散实体目标进行自动检测.该算法首先对现有Faster R-CNN网络的特征提取模块进行改进,提出一套全新的轻量化特征提取网络ResNet_FMBConv对雷达图像特征进行深度挖掘;基于ResNet_FMBConv网络改进现有特征金字塔(FPN)结构,实现对多尺寸下目标的精准辨识.其次,基于实测和仿真的雷达图像数据构建离散实体目标的自定义雷达数据集合,通过几何变换方法对雷达图像进行数据增强后用于算法验证.结果表明,改进算法在IOU=0.50∶0.95情况下的检测精确率、召回率、F1分数和FPS分别为45.1%、54.0%、49.1%和21.65 fps.在保证召回率基本持平的情况下,同比YOLOv3_spp、SSD、Retinanet和Faster R-CNN等目标检测算法的精确率和F1分数分别提升2%~9%和1%~6%.同时,试验结果表明改进后的特征提取网络ResNet_FMBConv也优于现有Resnet-50、VGG16、Efficientnet_b0和Mobilenetv3等目标分类网络.
Automatic Detection of Discrete Entity Objects in Tunnel Lining Based on Improved Faster R-CNN
As detection accuracy and timeliness of discrete entity objects in tunnel lining are directly related to the oper-ational safety of the tunnel,the automatic image interpretation using image vision technology can greatly improve the effi-ciency and accuracy of detection results.Therefore,by constructing a custom GPR dataset based on the radar image data of discrete entity objects,this paper proposed an improved Faster R-CNN algorithm to automatically detect discrete entity objects in tunnel lining.Firstly,this algorithm improved the feature extraction module of the existing Faster R-CNN net-work,and a new lightweight feature extraction network ResNet_FMBConv was proposed to mine the radar image features in depth.Based on the ResNet_FMBConv network,the existing feature pyramid network(FPN)structure was improved to achieve accurate identification of objects under multiple sizes.Secondly,based on the measured and simulated radar image data,by constructing a custom GPR dataset of discrete entity objects,this paper used the geometric transformation method to enhance the radar image data for the algorithm verification.The results show that the detection accuracy,re-call rate,balanced F1-score and FPS of the improved algorithm are 45.1%,54.0%,49.1%and 21.65 fps respectively when IOU=0.50:0.95.Under the condition that the recall rate remains basically unchanged,the precision rate and balanced F1-score of target detection algorithms such as YOLOv3_spp,SSD,Retinanet and Faster R-CNN are improved by 2%~9%and 1%-6%,respectively.Meanwhile,the experimental results show that the improved feature extraction network ResNet_FMBConv is also superior to the existing target classification networks such as Resnet-50,VGG16,Effi-cientnet_bO and Mobilenetv3.

discrete entity object detectionFaster R-CNNResNet_FMBConv moduleGPRfeature pyramid network(FPN)

崔广炎、王艳辉、徐杰、丁冠军、秦湘怡、任秋阳

展开 >

北京交通大学先进轨道交通自主运行全国重点实验室,北京 100044

北京交通大学交通运输学院,北京 100044

北京交通大学北京市城市交通信息智能感知与服务工程技术研究中心,北京 100044

北京交通大学城市轨道交通运营安全管理技术及装备交通运输行业研发中心,北京 100044

展开 >

离散实体目标检测 Faster R-CNN ResNet_FMBConv模块 GPR 特征金字塔

自然科学横向项目

123L00060

2024

铁道学报
中国铁道学会

铁道学报

CSTPCD北大核心
影响因子:0.9
ISSN:1001-8360
年,卷(期):2024.46(2)
  • 1
  • 28