首页|基于并行图卷积网络的无砟轨道监测测点异常识别

基于并行图卷积网络的无砟轨道监测测点异常识别

扫码查看
针对在服役过程中高速铁路无砟轨道结构健康监测可能出现由结构局部损伤或者传感器故障导致的测点异常问题,建立一种并行图卷积神经网络模型,来识别高速铁路无砟轨道监测测点的异常.采用结构早期初始状态的监测数据训练并行图卷积神经网络,获得结构初始状态下的测点数据之间的空间关联性;利用并行图卷积神经网络预测服役状态无砟轨道测点监测数据,实现轨道监测测点异常的识别;此外,对明显漂移的数据可基于有向图分析修正预测结果.将该方法应用于某高速铁路无砟轨道结构长期监测数据并识别了异常测点.
Anomaly Detection of Structural Monitoring Points for High-speed Railway Ballastless Track Based on Parallel Graph Convolution Neural Network
Aiming at the abnormal monitoring points in the structural health monitoring of high-speed railway ballastless track caused by local structural damage or sensor failures during service,a parallel graph convolution neural network model was established and applied to the anomaly detection of structural monitoring points of high-speed railway ballast-less track.Based on the monitoring data of the early initial state of the structure,the parallel graph convolution neural network was trained to obtain the spatial correlations among various monitoring points in the initial state of the structure.The parallel graph convolution neural network was then used to predict the monitoring data of ballastless track monitoring points in service,to realize the identification of abnormal monitoring points.In addition,for data with significant drift,the prediction results can be corrected based on directed graph analysis.The method was also applied to the long-term monitoring data of ballastless track structure of high-speed railways,while the presented model was used to identify ab-normal monitoring points.

graph convolution neural networkballastless trackstructural health monitoringanomaly detectioncondition assessment

孙立、郏凯亮、林超、黄永、李惠

展开 >

中铁第四勘察设计院集团有限公司线站处,湖北武汉 430063

哈尔滨工业大学土木工程智能防灾减灾工信部重点实验室,黑龙江哈尔滨 150006

图卷积神经网络 无砟轨道 结构健康监测 异常识别 状态评估

中国铁建股份有限公司科技重大专项中国科协(铁路)青年人才托举工程项目(第七届)

2021-A032021QNRC001

2024

铁道学报
中国铁道学会

铁道学报

CSTPCD北大核心
影响因子:0.9
ISSN:1001-8360
年,卷(期):2024.46(3)
  • 20