首页|基于IGWO-SVR的地铁车站投资预测

基于IGWO-SVR的地铁车站投资预测

扫码查看
为快速准确地预测可行性研究阶段的地铁车站投资以给投资方提供决策支持,提出一种改进的灰狼算法,来优化支持向量回归机参数的方法.通过收集整理地铁车站案例数据并建立数据库作为预测原始样本,利用自助法扩充样本以解决小样本预测准确率低的问题;对灰狼算法的初始种群生成、收敛因子和位置更新方式进行改进以避免灰狼算法陷入局部最优的问题;使用改进的灰狼算法对支持向量回归机的参数进行优化,建立地铁车站投资预测模型;以车站实例验证预测模型有效性.结果表明,改进的灰狼算法优化参数的支持向量回归机的预测模型在测试集平均相对误差为4.33%,拟合优度为0.944 0,改进的灰狼算法优化参数后预测模型优于未经优化的、粒子群优化的和灰狼算法优化的支持向量回归机预测模型.实例红高路车站相对误差为4.87%,证明提出的模型是有效的.
Subway Station Investment Prediction Based on IGWO-SVR
To predict the investment of subway stations quickly and accurately in the feasibility study stage and provide decision support for investors,this paper proposed a method to optimize the parameters of support vector regression ma-chine based on improved grey wolf optimizer.Firstly,by collecting and sorting out cases of subway stations and estab-lishing a database as the original prediction sample,bootstrapping was adopted to expand the sample to solve the prob-lem of low accuracy of small sample prediction.Secondly,the initial population generation,convergence factor and lo-cation update of the grey wolf optimizer were improved to avoid the problem of grey wolf optimizer being stuck in local optima.Subsequently,the improved grey wolf optimizer was used to optimize the parameters of support vector regres-sion machine to establish a subway station investment prediction model.Finally,a station example was used to verify the validity of the prediction model.The results show that the average relative error of the prediction model of the sup-port vector regression machine optimized by the improved grey wolf algorithm is 4.33%,with the goodness of fit of 0.944 0 on the test set.The prediction model based on improved grey wolf algorithm with optimized parameters is bet-ter than the unoptimized,particle swarm optimized and grey wolf algorithm optimized support vector regression predic-tion models.The relative error of the case of Honggaolu station is 4.87%,proving the effectiveness of the proposed prediction method.

investment predictionbootstrapgrey wolf optimizersupport vector regressionsubway station

郝晶晶、段鹏鑫、陈雨欣、段晓晨

展开 >

石家庄铁道大学土木工程学院,河北石家庄 050043

河北经贸大学 数学与统计学学院,河北石家庄 050061

石家庄铁道大学管理学院,河北石家庄 050043

投资预测 自助法 灰狼算法 支持向量回归机 地铁车站

国家自然科学基金河北省自然科学基金河北省研究生创新项目

72071133G2019210226CXZZBS2020144

2024

铁道学报
中国铁道学会

铁道学报

CSTPCD北大核心
影响因子:0.9
ISSN:1001-8360
年,卷(期):2024.46(5)
  • 15