首页|基于改进Skip-GAN的高速铁路巡检图像异常检测

基于改进Skip-GAN的高速铁路巡检图像异常检测

扫码查看
针对高速铁路探伤巡检过程中普遍存在的训练样本不平衡和打标签复杂等问题,提出一种改进的Skip-GAN算法,对巡检图像中存在的多类病害进行无监督检测.对高速铁路巡检图像进行预处理,包括轨道板分割和数据增强,减少排水沟和明暗环境对网络重构图像的影响;对Skip-GAN结构进行改进,包括增加注意力机制模块、修改判别器为双自动编码器结构等;改进卷积神经网络的损失函数,增加网络对图像的重构能力;将高速铁路探伤巡检中正常图像作为训练样本输入模型进行训练,实现端到端的巡检图像多种类病害的检测.实验结果表明:提出的检测模型在探伤图像病害样本数量少时,对钢轨表面伤损、扣件缺少、轨道板异物三种类型的异常检测取得良好的检测结果,模型的识别精确度、F1、AUC分别达到0.868、0.821、0.842.
Anomaly Detection of High-speed Railway Inspection Images Based on Improved Skip-GAN
In response to the problems of unbalanced training samples and complex labeling in the process of high-speed rail flaw detection,this paper proposed an improved Skip-GAN algorithm to perform unsupervised detection of multiple types of defects in inspection images.First,the high-speed railway inspection images were preprocessed,including track slab segmentation and data enhancement,to reduce the influence of drainage ditches and light and dark environments on network reconstructed images.Second,improvements were made to the Skip-GAN structure,including increasing an at-tention mechanism module and modifying the discriminator to a dual auto-encoder structure.Third,the loss function of the convolutional neural network was improved to increase the network ability to reconstruct images.Finally,the normal images in the high-speed rail flaw detection inspection were used as the training sample input model for training,reali-zing end-to-end detection of various defects in inspection images.The experimental results show that the detection model proposed in this paper achieves good detection results for three types of abnormal detection of rail surface damage,miss-ing fasteners,and foreign matters in the track slab in the case of small number of defect samples with the precision,F1,and AUC of the model reaching 0.868,0.821,and 0.842,respectively.

high-speed railwaypatrol inspection imageanomaly detectionGANunsupervised learningdeep learning

何庆、刘震、王启航、张岷、王平

展开 >

西南交通大学土木工程学院,四川 成都 610031

西南交通大学 高速铁路线路工程教育部重点实验室,四川成都 610031

中铁第一勘察设计院集团有限公司,陕西西安 710043

高速铁路 巡检图像 异常检测 GAN 无监督学习 深度学习

2024

铁道学报
中国铁道学会

铁道学报

CSTPCD北大核心
影响因子:0.9
ISSN:1001-8360
年,卷(期):2024.46(9)