首页|中低速磁浮列车操纵策略及运行优化算法

中低速磁浮列车操纵策略及运行优化算法

扫码查看
中低速磁浮列车线路坡度起伏大,运行环境复杂,为改善其运行优化效果,提出一种基于改进蜣螂优化算法的中低速磁浮运行优化方法.首先,针对线路特点提出"多次惰行"的操纵策略;其次,构建一种考虑准时性、节能性和舒适度的中低速磁浮列车运行优化模型;然后,运用Cubic混沌映射和反向学习策略对蜣螂优化算法进行种群初始化,同时设计线性自适应种群分配比提升算法收敛速度;最后,利用基准测试函数与传统智能优化算法进行对比测试,并基于某磁浮线路进行实例仿真.实验结果表明:改进的算法不仅在求解复杂函数上有良好寻优性能,同时实例仿真中各项性能指标均有效提升,具有较好的参考意义和实用价值.
Manipulation Strategy and Operation Optimization Algorithm for Medium/Low Speed Maglev Trains
In order to improve the operation optimization of medium/low speed maglev train line with large gradients and complex operating environments,a method was proposed based on the improved dung beetle optimizer.Firstly,the"Multiple Coasting"manipulation strategy was proposed in response to the line characteristics.Secondly,an optimization model for medium/low speed maglev train operation that takes into account punctuality,energy efficiency and comfort was established.Then,the Cubic chaotic mapping and opposition-based learning strategies were used to initialize the population of the dung beetle optimizer,while a linear adaptive population allocation ratio was designed to improve the convergence speed of the algorithm.Finally,a benchmark test function was used to test the algorithm against the four population intelligence optimization algorithms,with an example simulation conducted based on a maglev line.The ex-perimental results show that the improved algorithm,with good optimization performance in solving complex functions and effective improvement of the performance indicators in the example simulation,has good reference and practical value.

medium/low speed magnetic levitationmanipulation strategyoperational optimizationdung beetle optimizer

周艳丽、欧阳瑞祺、陆荣秀、崔俊锋、王琦、杨辉

展开 >

华东交通大学电气与自动化工程学院,江西南昌 330013

华东交通大学江西省先进控制与优化重点实验室,江西南昌 330013

北京全路通信信号研究设计院集团有限公司系统技术研究院,北京 100070

中低速磁浮 操纵策略 运行优化 蜣螂优化算法

国家自然科学基金国家重点研发计划江西省科技专项

U20342112022YFB430050020203AEI009

2024

铁道学报
中国铁道学会

铁道学报

CSTPCD北大核心
影响因子:0.9
ISSN:1001-8360
年,卷(期):2024.46(10)