首页|基于K-means聚类和BP神经网络的电梯能耗实时监测方法

基于K-means聚类和BP神经网络的电梯能耗实时监测方法

扫码查看
针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法。在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,利用相似系数法进行相似度计算,获取相似系数。对相似电梯能耗数据进行小波分解获取高低频序列,分别采用LSSVM-GSA检测方法和均方加权处理方法对低频和高频部分进行处理,将两个结果进行重构,得到最终的实时监测结果。仿真实验结果表明:所提方法能够获取高精度、低耗时、高稳定性的监测结果。
Real-time Monitoring Method of Elevator Energy Consumption Based on K-means Clustering and BP Neural Network
This paper proposes a real-time monitoring method of elevator energy consumption based on the combination of K-means clustering algorithm and BP neural network,which addresses the issues of low monitoring accuracy and long monitoring time when existing methods are used to monitor elevator en-ergy consumption.The characteristic values of the main factors that affect real-time monitoring of building energy consumption are extracted from the cleaned energy consumption data,and the similarity coefficient method is used to calculate the similarity and obtain the similarity coefficient.The way of wavelet decompo-sition on similar elevator energy consumption data is used to obtain high and low frequency sequences.The study uses LSSVM-GSA detection method and mean square weighted processing method to process the low and high frequency parts,and reconstructs the two results to obtain the final real-time monitoring results.The simulation experimental results show that the proposed method can obtain highprecision,low time consumption,and high stability monitoring results.

elevator energy consumptionK-means clustering algorithmBP neural networkdata cleaning

彭诚

展开 >

合肥职业技术学院(安徽 合肥 238000)

电梯能耗 K-means聚类算法 BP神经网络 数据清洗

安徽省自然科学研究项目(2021)

KJ2021A1403

2024

通化师范学院学报
通化师范学院

通化师范学院学报

影响因子:0.266
ISSN:1008-7974
年,卷(期):2024.45(4)
  • 12