首页|Hilbert 空间中的 fusion-Besselian 框架与拟 fusion-Riesz 基

Hilbert 空间中的 fusion-Besselian 框架与拟 fusion-Riesz 基

扫码查看
fusion框架作为Hilbert空间中g-框架的特例,与g-框架有许多类似的性质。该文在已有文献的基础上,借助算子理论知识,举反例说明去掉有限维空间的条件下结论不成立,进一步给出fusion-Besselian框架的算子刻画。结合fusion-Besselian框架的算子刻画和反例1,阐明在探讨该类框架性质时,应关注其适用条件和范围。随后讨论拟fusion-Riesz基与拟Riesz基、fusion-Besselian框架之间的关系。最后讨论fusion-Besselian框架和拟fusion-Riesz基的算子扰动,所得结论补充了算子扰动方面的研究。
Fusion-Besselian Frames and Fusion-Riesz Bases in Hilbert Spaces
Fusion-frames,which are special cases of g-frames in Hilbert space,share many similar prop-erties with g-frames,but it does not mean that all properties are similar.On the basis of the existing research,this paper uses the operator theory to discuss the equivalent characterization of fusion-Besselian frames,and a counter example is given to show that the conclusion is not valid without the finite dimen-sion space.Furthermore,the operator characterization of fusion-Besselian frames is given.Combining the operator characterization of fusion-Besselian frames with the first counter example,it is shown that the conditions and scope of application should be concerned.Then we discuss the relations among near fusion-Riesz bases,near Riesz bases and fusion-Besselian frames.Finally,the operator perturbations of the fusion-Besselian frames and the near fusion-Riesz bases are discussed,supplementing the research on operator perturbations.

g-framefusion framefusion-Besselian framenear fusion-Riesz bases

王亚玲、杨洪军、王靖华

展开 >

满洲里俄语职业学院(内蒙古 满洲里021400)

空军航空大学基础部

g-框架 fusion 框架 fusion-Besselian 框架 fusion-Riesz

2024

通化师范学院学报
通化师范学院

通化师范学院学报

影响因子:0.266
ISSN:1008-7974
年,卷(期):2024.45(6)