首页|基于深度残差网络的光照干扰人脸识别方法

基于深度残差网络的光照干扰人脸识别方法

扫码查看
自然光照条件下的变化非常复杂,包括光照强度、方向、色温,以及阴影等因素的变化,这些因素都可能对人脸图像的外观产生显著影响。为此,提出了一种基于深度残差网络的光照干扰人脸识别方法。该方法引入残差学习框架,利用深度残差网络重建光照干扰下的人脸图像。通过应用优化白平衡技术,实现对人脸的光照不均衡的补偿。此外,改进后的卷积神经网络可以在深度学习框架中实现人脸识别,用于识别和验证个体身份。实验结果表明:该研究方法能够对人脸实现重建,且对处理光照干扰人脸识别的效果表现理想,损失值较低。
A Facial Recognition Method Based on Deep Residual Network against Lighting Interference
The changes under natural lighting conditions are very complex,including changes in lighting intensity,direction,color temperature,and shadows,which may have a significant impact on the appear-ance of facial images.To this end,a facial recognition method based on deep residual networks against lighting interference is proposed.A residual learning framework is introducecd,utilizing deep residual networks,to reconstruct facial images under illumination interference.Optimized white balance technology is applied to compensate for uneven lighting on the face.Convolutional neural networks are improved to achieve facial recognition,and deep learning frameworks are used to identify and verify individual identi-ties.The experimental results show that the research method can achieve facial reconstruction and has an ideal effect on facial recognition against lighting interference,with lower loss values.

deep residual networklight interferencefacial recognitionimproving convolutional neural networks

刘静

展开 >

安徽外国语学院(安徽 合肥 230012)

深度残差网络 光照干扰 人脸识别 改进卷积神经网络

2024

通化师范学院学报
通化师范学院

通化师范学院学报

影响因子:0.266
ISSN:1008-7974
年,卷(期):2024.45(10)