通化师范学院学报2024,Vol.45Issue(12) :1-9.DOI:10.13877/j.cnki.cn22-1284.2024.12.001

基于交叉算子改进遗传算法在柔性作业车间的研究

Research on an Enhanced Genetic Algorithm with Cross Operator for Flexible Manufacturing Workshop

郜振华 乔恒赟 张洪亮
通化师范学院学报2024,Vol.45Issue(12) :1-9.DOI:10.13877/j.cnki.cn22-1284.2024.12.001

基于交叉算子改进遗传算法在柔性作业车间的研究

Research on an Enhanced Genetic Algorithm with Cross Operator for Flexible Manufacturing Workshop

郜振华 1乔恒赟 1张洪亮1
扫码查看

作者信息

  • 1. 安徽工业大学管理科学与工程学院(安徽 马鞍山 243000)
  • 折叠

摘要

针对柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP),该文提出了一种改进的自适应三体交叉算子遗传算法模型.该模型以最小化工件最大完工时间为目标,通过引入三体交叉算子,有效促进了最优解的产生.同时,结合自适应的交叉和变异概率,提高了算法搜索最优解的能力,加速了种群收敛.实验结果表明:与传统的灰狼优化算法和混合量子粒子群优化启发式算法相比,该改进算法在柔性作业车间调度问题中具有更好的性能,显著提升了搜索最优解的能力.

Abstract

For the Flexible Job-shop Scheduling Problem(FJSP),this paper presents an improved adap-tive three-body crossover operator genetic algorithm model.The model aims to minimize the maximum completion time of the workpiece and effectively promotes the generation of the optimal solution by intro-ducing the three-body crossover operator.At the same time,combined with the adaptive crossover and mutation probability,the algorithm can improve the ability of searching the optimal solution and accelerate the population convergence.The experimental results show that the improved algorithm has better perfor-mance in flexible job-shop scheduling problems than traditional Gray Wolf optimization algorithm and hybrid quantum particle swarm optimization heuristic algorithm,and significantly improves the ability to search for optimal solutions.

关键词

柔性作业车间调度/三体交叉算子/自适应概率/遗传算法

Key words

flexible job-shop scheduling/three-body crossover operator/adaptive probability/genetic algorithm

引用本文复制引用

出版年

2024
通化师范学院学报
通化师范学院

通化师范学院学报

影响因子:0.266
ISSN:1008-7974
段落导航相关论文